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ABSTRACT 
CARBON NANOMATERIALS IN FRESHWATER ECOSYSTEMS: A CHRONIC, 

MULTI-GENERATIONAL, AND GENETIC ASSESSMENT OF NANOMATERIAL 
TOXICITY TO DAPHNIA MAGNA 

 

By 

Devrah Arndt 

 

The University of Wisconsin Milwaukee, 2014 
Under the supervision of professor Dr. Rebecca Klaper 

 

Carbon nanomaterials are synthesized with a variety of core structures and surface 

chemistries to make them more biocompatible for application in different industries, but 

variation in core structure and functionalization can change the toxicity of carbon 

nanomaterials to organisms. In addition, current literature is dominated by data from 

acute toxicity assays, but meta-data is necessary to improve our understanding of 

nanomaterial toxicity. This project identifies specific core structures and surface 

chemistries that make carbon nanomaterials more and less toxic using chronic toxicity 

assays and multi-generational assays to generate a dataset on the sub-lethal impacts of 

nanomaterials to Daphnia magna. In addition, gene expression was evaluated on 

organisms from these experiments to assess biochemical pathways that are important in 

an organism’s response to nanomaterial exposure. Results indicate that core structure and 

surface chemistry influence nanomaterial toxicity to Daphnia. Fullerene gamma-

cyclodextrin complexes (C60-GCD) induced 100% mortality to daphnids after 17 days of 

exposure at 5 ppm, while fullerenes that were not bound to gamma-cyclodextrin were the 

least toxic particle types to daphnids. Carbon nanotubes induced the most consistent 
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negative impacts to Daphnia reproduction and growth, as all types of carbon nanotubes 

reduced reproduction or adult size at concentrations of 10 ppm or 50 ppm. Multi-

generational impacts to mortality and reproduction were observed in Daphnia for several 

particles types, and single-walled carbon nanotubes functionalized with carboxy-amides 

(SWCNT-CONH2) significantly reduced reproduction in the F0, F1, and F2 generations. 

Many of the carbon nanomaterial exposures did not change the expression of glutathione-

s-transferase (GST), vitellogenin fused with superoxide dismutase (VTG-SOD), or 

NADH dehydrogenase, indicating that other biochemical pathways are important in the 

toxicity of these materials. However, GST expression was reduced in F0 and F2 daphnids 

from SWCNT-CONH2 exposures, indicating a possible impairment of this particle type 

to the oxidative response system. Fullerenes functionalized with malonate and non-

covalently bound to GCD (C60-malonate-GCD) induced significant changes in the 

expression of all three investigated genes, and these changes are indicative of oxidative 

stress in daphnids (increases in GST transcripts), impacts to reproduction (increased 

VTG-SOD transcripts), and impacts to mitochondrial metabolism (decreased NADH 

dehydrogenase transcripts). In addition, these data indicate that GST, VTG-SOD, and 

NADH dehydrogenase have the potential to be used as biomarkers of early detection of 

nanomaterial exposure for SWCNT-CONH2 and C60-malonate-GCD particle types. 

Daphnia have a central role in the trophic structure of ecosystems, as they feed on algae 

and transfer energy from lower trophic structure to higher trophic structures.  A decline in 

daphnid populations would change the composition of phytoplankton communities, with 

the potential for eutrophication of small lakes and ponds if daphnid populations are 

completed eliminated from the ecosystem. Daphnia are also essential food sources for 
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juvenile and adult fish, and a loss of daphnid populations would reduce available 

nutrition for higher trophic organisms. This research provides a thorough and detailed 

expression of sub-lethal nanomaterial toxicity to Daphnia in long-term and multi-

generational scenarios, and it can be used to inform the synthesis of nanomaterials such 

that they cause minimal harm to organisms and the environment.  
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CHAPTER 1: INTRODUCTION 

A nanomaterial is defined as any material with at least one dimension that is 

measured between 1 and 100 nanometers.  Nanomaterials are characterized by very high 

surface area to volume ratios and they display exaggerated mechanical, thermal, catalytic, 

electrical, and optical activity when compared to their larger counterparts [1]. The 

increased chemical and physical reactivity of nanomaterials makes them useful for many 

applications; however, these unique properties make it difficult to predict nanomaterial 

toxicity to organisms. As a consequence, literature contains contradictory information 

about the toxicity of nanomaterials due to slight deviations in particle design and 

experimental conditions.  In addition, there is not enough toxicity data in the literature on 

chronic, multi-generational, and genetic impacts of nanomaterials to organisms.  This is 

problematic because acute toxicity data does not capture all of the facets of nanomaterial 

toxicity, leaving many questions unanswered.   

Carbon nanomaterials (CNMs) are of particular interest, as they are not 

biocompatible in their unfunctionalized pristine state.  Scientists and engineers have 

synthesized CNMs with a particularly wide variety of core structures and surface 

properties to enhance their function in many types of applications [2]. The wide variety 

of CNM core structures and surface chemistries can change how CNMs interact with 

biological systems, thereby increasing the complexity of interactions between CNMs and 

organisms and further muddling our understanding of CNM toxicity. This is problematic, 

as people and organisms will likely become exposed to CNMs from the manufacture or 

use of nano-products or from waste generated from these products. Potential exposure 

routes include direct injection into the blood circulation [3], inhalation from worker 
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exposure [4] or from commercial product use [5], and absorption into the body through 

dermal contact [6].  CNM waste from sewage and landfills will be transported to 

wastewater treatment plants; however, it is not clear if treatment processes will 

successfully remove these emerging contaminants from wastewater effluent [7].  It is 

possible that CNMs from wastewater treatment plants and other point and non-point 

source pollution could infiltrate drinking water sources, and aquatic organisms are at 

particular risk of exposure as CNM waste accumulates in the environment.  

Current literature indicates a wide variety of toxicities across CNM particle types 

that vary in core structure and surface characteristics. Fullerenes dispersed with gum 

arabic were not found to be toxic, however SWCNTs dispersed with gum arabic induced 

50% mortality to C. dubia  (LC50) and 50% growth inhibition to P. subcapita (IC50) at 

0.27 ppm and 2.11 ppm, respectively [8], indicating that core structure has a role in the 

differential toxicity of CNMs.  Surface functionalization has also been shown to impact 

toxicity. The LC50 for exposure of unfunctionalized fullerenes to zebrafish embryos was 

found to be 200 ppb, while the LC50 for exposure to hydroxylated fullerenes was over 

4,000 ppb, indicating that hydroxylation can decrease the toxicity of fullerenes to 

zebrafish embryos [9]. In addition, data from our own laboratory indicated significant 

mortality of daphnids to hydroxylated fullerenes and unfunctionalized fullerenes with 

concentrations as high as 100 ppm [10], reiterating the wide range of potential toxicities 

associated with CNMS.  

The reasons for these variations in toxicity with differential core structures and 

suface properties are not entirely clear. Alterations in core structure and surface 

functionalization can change the characteristics of the particles themselves, and this can 
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subsequently lead to alterations in toxicity. Core structure and surface functionality of 

nanomaterials can alter particle characteristics like aggregation state, charge, 

hydrophobicity, and bioavailability. For example, a previous study indicated that 

functionalization of SWCNTs altered SWCNT aggregation state, dispersivity, and 

morphology, and that these changes in aggregation state were responsible for reduced 

cytotoxicity to bacteria [11]. Literature shows that positively charged particles can disrupt 

cell membrane potentials with the consequence of inhibited cell proliferation, while 

negative and neutral charged particles do not have this affect.  In addition, charged 

particles can also disrupt cell membrane bilayers, with positively charged particles 

inducing fluidity and negatively charged particles causing local gelation, which could 

lead to differential nanomaterial toxicities. Surface charge can affect the formation of 

protein coronas in biological media, which can also modify particle toxicity [12].  

Functionalization and aggregation state have also been shown to alter the reactivity and 

bioactivity of fullerenes, as smaller aggregates tend to be more hydroxylated, produce 

more reactive oxygen species (ROS), and are associated with increased levels of 

microbial inactivation [13].  

Literature is biased toward acute toxicity data that are cheaper and easier to 

generate, while data on the impacts of chronic nanomaterial exposure are less plentiful. 

Despite larger data sets that are available for acute nanomaterial toxicity, it is more likely 

that environmental exposure of organisms to nanomaterials will be long-term with an 

increased potential for sub-lethal impacts. To further complicate toxicity testing, 

nanomaterials possess physical-chemical components other than mass and concentration 

that are more common for traditionally toxic chemicals and contaminants. These physico-
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chemical factors that influence nanomaterial interactions are temporally dynamic; they 

change over time and they change upon interaction with biological systems [14]. This 

indicates the potential for a change in toxicity of nanomaterials over time and with 

variations in the exposure setting. Therefore there is a specific need for experimental data 

on the long-term exposure of multiple types of nanomaterials to freshwater organisms 

that cover a wide breadth of nanomaterial types.  One of the goals of this project is to 

determine the chronic impacts of twelve types of unfunctionalized and functionalized 

CNMs to Daphnia magna.  

In addition to the concerns and necessity for more experiments on chronic 

nanomaterial toxicity, nanomaterials have the potential to induce multi-generational 

impacts on whole organisms, and currently there is no literature available on the multi-

generational impacts of nanomaterials on organisms after the exposure has been removed.  

There are already multi-generational studies on other types of contaminants, like 

endocrine-disrupting compounds and heavy metals [15, 16], and recent evidence 

demonstrates the potential for nanomaterials to act as endocrine disruptors to vertebrates 

and invertebrates [17]. Nanomaterials have also been shown to induce changes to the 

epigenome in vitro [18, 19], and if these changes happen in the germ-line they could be 

propagated to future generations of organisms, further accentuating the need for multi-

generational studies to be carried out with nanomaterials.   

Multi-generational assays can also offer valuable toxicity data that single 

generation assays cannot provide. Multi-generational assays allow for toxicity testing of 

all critical windows of exposure [20], including exposure to nanomaterials during 

prenatal and perinatal stages of development.  Exposure during these sensitive periods of 



www.manaraa.com

	  

	  

5	  

development can lead to dysregulation of the fetal epigenome, with increased potential 

for negative consequences to affect future generations of organisms, even after the 

exposure is removed [21]. This is important, as over the past decade there has been a 

push for more toxicity testing over longer durations and at more sensitive stages of 

development.  A comprehensive evaluation of chemical toxicity at more life stages can 

ensure that the needs of more sensitive populations, like children, are being met by safety 

and regulatory guidelines [22].  

Another way to investigate the long-term impacts of nanomaterials is to identify 

the mechanisms of action of nanomaterials in organisms. Understanding changes in gene 

expression after nanomaterial exposure can provide additional information about 

nanomaterial toxicity to organisms that cannot be observed in life cycle and mortality 

assays, including information about the differences between low-dose and high-dose 

effects, potential mechanisms of toxicity, and discovery of biomarkers of early exposure 

[23].  The primary mechanism that is used to describe individual toxicity of CNMs to 

organisms is oxidative stress.  Oxidative stress is associated with an increase in reactive 

oxygen species (ROS) or a decrease in the effectiveness of anti-oxidant defenses in a 

living system, and it can result in significant damage to cell membranes and DNA.  Some 

types of CNMs have been shown to increase ROS [24], decrease activity of important 

anti-oxidant enzymes [25], increase levels of oxidatively damaged DNA [26], and induce 

lipid peroxidation [27] in biological systems.  As organisms react to oxidative stress, 

certain genetic pathways and biological activity can become sequentially activated, 

including DNA repair activity and the activation of pro or anti-apoptotic biochemical 
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pathways [28]; however, it is important to note that this activity could be an organism’s 

response directly to the nanomaterial, as well.   

Although oxidative stress is described as the primary mechanism of CNM 

toxicity, other mechanisms could have a role in CNM toxicity.  Cytochrome p450’s are 

important for hormone regulation and xenobiotic metabolism [27], and the expression of 

these genes could change in response to CNM exposure because nanomaterials might 

interfere with hormonal activity in organisms or be transformed by p450 enzymatic 

activity.  CNMs could also impact an organism’s immune system, as has been shown by 

impairment to phagocytic activity in human macrophages [29] and increased 

inflammation observed in trout macrophages [30].  

Epigenetics describes changes in gene expression resulting from alterations in the 

underlying structure of DNA, and changes at this level of biological organization could 

also describe mechanisms of CNM toxicity. Epigenetic modifications operate through 

changes in histone and DNA machinery, and these signatures have potential roles in cell 

growth and differentiation, cell death, and disease and aging. Other chemicals have 

already been shown to have epigenetic impacts to organisms, including endocrine 

disruptors like vinclozolin [31] and heavy metals [32].  

Daphnia magna constitute an ideal model invertebrate for aquatic toxicity assays. 

Their life histories are well known, they have a short life span coupled with high rates of 

reproduction, and they are easy to keep in the laboratory.  In addition, Daphnia are 

becoming invaluable model organisms for experiments in environmental genomics.  

Daphnia reproduction is parthenogenetic and Daphnia young are exact genetic clones of 

their mothers. This helps us to isolate changes in gene expression that are a consequence 
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of specific environmental stressors (i.e. nanomaterials). Daphnia are also primary 

consumers in aquatic environments, and they transfer trophic energy from the base of the 

trophic pyramid to higher trophic levels.  Impacts to daphnid populations in the wild 

would result in a disruption of the balance of aquatic ecosystems in the wild.  

Despite the demonstrated advantages of nanomaterials, scientific evidence 

suggests that exposure could adversely impact ecosystems and human health.  The unique 

size-related properties of CNMs make it difficult to make generalizations about CNM 

distribution or toxicity in organisms because their behaviors cannot be described 

singularly by classical physics or quantum physics alone, and literature lacks more 

detailed comparative toxicity information on multiple types of nanomaterials over a 

chronic and multi-generational time period. CNMs are shown to distribute to cell and 

organs in living systems, and particle design and the surrounding environment can alter 

that distribution and toxicity patterns.  CNM exposure can exert significant impacts on 

important life cycle parameters of aquatic organisms with potential negative implications 

for populations and ecosystem dynamics.  Oxidative stress is described as the primary 

mechanism of toxicity; however, it is likely that other mechanisms also play a role in 

nanomaterial toxicity.  

This research seeks to provide data that can help to fill the in gaps in the current 

nano-toxicology literature.  The first part of this dissertation seeks to determine how core 

structure and surface chemistry influence the toxicity of CNMs over a chronic exposure.  

In addition, we will evaluate how good acute toxicity assays are at predicting chronic 

nanomaterial toxicity. To answer these questions, Daphnia magna will be exposed to 

various types of CNMs that differ in core structure and surface chemistry for a 21-day 
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period and mortality, reproduction, and daphnid size at the end of the exposure will be 

documented.  It is hypothesized that carbon nanotubes will induce higher rates of 

mortality, lower reproduction, and reduce values for growth in daphnids compared to 

fullerenes.  In addition, it is expected that an evaluation of toxicity at 48 hours will not be 

a good predictor of sub-lethal impacts of nanomaterial toxicity. This research will 

improve the current knowledge in the field of nano-toxicology because it will provide a 

more-detailed comparison of nanomaterial toxicity using sub-lethal endpoints over a 

long-term exposure.  The current state of knowledge in the field is dominated by data 

from acute toxicity assays that are easier to perform and more commonly used by 

regulators. However, it is more likely that organisms will receive a chronic exposure to 

nanomaterials in the environment that won’t induce acute mortality, but could change 

essential life cycle parameters such as reproduction and growth over a longer time period.  

The second part of this dissertation seeks to determine how core structure and 

surface chemistry influence the multi-generational toxicity of CNMs to Daphnia over 

two successive generations after the initial nanomaterial exposure is removed. To answer 

this question, F1 neonates from the exposed F0 brood were transferred to control water 

and raised over a chronic time period, and this was repeated with the F2 generation. 

Mortality, reproduction, and adult size were measured during these multi-generational 

trials. It is hypothesized that carbon nanotubes will negatively affect multi-generational 

mortality, reproduction, and size compared to fullerenes. Current literature demonstrates 

multi-generational impacts of other types of toxicants to organisms and cells, and 

literature also indicates that some types of nanomaterials can induce epigenetic changes 

to cells in vitro.  The second part of this dissertation supplies the first data on multi-
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generational nanomaterial toxicity to whole organisms after the exposure has been 

removed, and it provides an even more in-depth comparison of long-term nanomaterial 

toxicity to organisms.   

The third part of this dissertation identified underlying mechanisms of toxicity 

that were observed in the chronic and multi-generational trials from the first two parts of 

this work. To identify underlying mechanisms of toxicity, genes from key biochemical 

pathways will be investigated by Q-PCR. Changes to the expression of glutathione-s-

transferase (GST) will evaluate the role of oxidative stress associated with CNM 

exposure. Expression of vitellogenin fused with superoxide dismutase (VTG-SOD) helps 

determine the role of CNM exposure on daphnid reproduction, and changes in the 

expression of NADH dehydrogenase helps to identify the impact of CNMs on glycolysis 

and mitochondrial metabolism. Although this project investigated changes in the 

expression of genes in a multi-generational context, it did not directly investigate any 

epigenetic modifications in daphnids (however, if changes in gene expression appear 

across multiple generations of daphnids, it is possible that nanomaterials act on the 

daphnid epigenome, and a direct investigation of epigenetic impacts on daphnids would 

be included in future work).  

It is hypothesized that carbon nanotubes will induce more changes to the 

expression of these genes than fullerenes. In addition, it is expected that different types of 

nanomaterials will alter different biochemical pathways, so that not all nanomaterial 

types will induce the same patterns of expression to GST, VTG-SOD, and NADH 

dehydrogenase. This data can advance current knowledge in the field of nanomaterial 

toxicity because a greater understanding of biochemical pathways important in the 
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nanomaterial stress response of Daphnia can provide a uniquely detailed evaluation of 

nanomaterial toxicity; this in turn would allow for nanomaterial design that would 

maximize their use in industries, while reducing harmful impacts to biological systems.  

The molecular processes that are important in the stress response can also be resolved and 

linked to processes in other species, and relevant genes can be used as potential 

biomarkers of early exposure of organisms to nanomaterials in the environment.  

Collectively, the results of these three project elements will help to establish what 

types of core structures and functionalizations are more toxic to exposed and future 

generations of Daphnia, with the ultimate goal to find ways to synthesize nanomaterials 

in ways that minimize their potential harms to the environment.  
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ABSTRACT 

There are currently over ninety products incorporating carbon nanomaterials (CNMs) on 

the market today for a variety of applications. Modifications in core structure and surface 

chemistry of manufactured nanomaterials are used to optimize nanomaterials for specific 

uses. However, there is a notable lack of information on the toxicity of how core structure 

and surface chemistry may alter toxicity in low-level, chronic exposures. This paper 

examines the effects of twelve CNMs that differ in their core structure and surface 

chemistry to Daphnia magna over a 21-day chronic exposure. Overall nanomaterials with 

a carbon nanotube core were more toxic to daphnids than fullerenes, with the one 

exception of fullerenes with a gamma-cyclodextrin surface chemistry. Acute mortality 

was not a good predictor of chronic effects as none of the CNMs induced toxicity at 

tested concentrations after 48 hours, yet chronic assays indicated significant differences 

in mortality, reproduction, and growth realized after 21 days. Our results indicate that 1) 

acute exposure assays do not accurately describe the impact of CNMs to biological 

systems, 2) chronic exposures provide valuable information that indicates the potential 

for different modes of action for nanomaterials of differing chemistries, and 3) core 

structure and surface chemistry both influence particle toxicity. 
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INTRODUCTION  

Nanomaterials exhibit unique physical and chemical properties that make them 

valuable additions to various products including medicines, polymer composites, and 

electronics [1-3]. However, the benefit of enhanced physical and chemical activity of 

nanomaterials is also cause for concern as nanomaterials may be released into aquatic 

environments and also exhibit increased reactivity there. The novel, size related reactivity 

of nanomaterials complicates the ability to predict or change nanomaterial toxicity [4]. 

Carbon nanomaterials (CNMs) are of specific interest, as they are engineered with a wide 

variety of core structures and surface functionalizations that change their chemical and 

physical properties to enhance their suitability for several industrial applications [5, 6]. 

Despite the large array of available CNM configurations, research to date has focused on 

the toxicity of a limited variety of CNM types [7-9], and much of the data are not 

comparable across toxicity experiments due to variations in organisms and experimental 

conditions [10, 11].  

Nanomaterial toxicity has been attributed to core structure and surface 

functionalization, and variations in these factors have been shown to alter the level of 

toxicity to biological systems [10]. Existing studies find a wide range of toxicity 

depending on particle type and experimental set up. As an example, single-walled carbon 

nanotubes (SWCNTs) induce significant cytotoxicity to alveolar macrophages at doses of 

11.3 µg/cm2, while fullerenes were cytotoxic at 226 µg/cm2 in this experiment [12]. 

Surface chemistry such as hydroxylation has been shown to alter the mechanism of 

particle cytotoxicity, as unfunctionalized fullerenes induce reactive oxygen species 

(ROS) dependent membrane damage and necrosis, while hydroxylated fullerenes are 
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associated with ROS-independent mechanisms of cell death,  apoptosis, and DNA 

fragmentation [13]. Variations in core structure and functionalization have also been 

shown to impact nanomaterial toxicity in vivo, as 48-hr LC50 values for SWCNTs 

indicated much higher toxicity to daphnids compared to MWCNTs and C60 [14], and 

oxidative stress biomarkers were differentially activated in daphnids after exposure to 

nanomaterials that varied in core structure and functionalization [15]. Although literature 

indicates the importance of core structure and functionalization for evaluating 

nanomaterial toxicity, many experiments focus on the investigation of the acute toxicity 

of a few types of nanomaterials to organisms or cell cultures.  

Aquatic organisms have a particular risk of exposure as many chemicals used 

within consumer products often end up in household wastewater and pass into receiving 

rivers and lakes. Data already indicate the presence of manufactured nanomaterials in 

wastewater effluent entering natural environments for C60 fullerenes and N-

methylfulleropyrrolidine at concentrations as high as 65 ppb [16], and titanium dioxide 

nanoparticles at concentrations varying from 5 to 15 ppb [17]. Yet, like other emerging 

contaminants these particle types are not acutely toxic at levels found in the environment.   

The real impact of many emerging contaminants may be due to sub-lethal toxicity 

over a chronic exposure.  Most nanotoxicology studies to date are acute, high-dose 

exposure studies, and do not provide information as to whether nanomaterials have an 

impact at a lower dose over a chronic exposure or whether acute toxicity information 

predicts effects in this type of more realistic scenario. In addition, this type of study can 

provide a better assessment of mechanisms of CNM toxicity. This project investigates the 

effects of chronic exposures of Daphnia magna to twelve types of CNMs that differ in 
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their core structure and surface functionalization. The goal of this research is to generate 

detailed and comparative nanotoxicity profiles for a variety of core structures and 

functionalizations within one study to determine whether nanomaterials that differ in 

their core structure or functionalization also differ in their chronic toxicological impacts. 

In addition, this project seeks to determine whether acute assays accurately predict the 

effects of chronic nanomaterial exposure. In this research, we measure the impacts of 

chronic nanomaterial exposure on multiple endpoints, including reproduction and adult 

size, in the aquatic toxicology and ecological model organisms, Daphnia magna.  

 

METHODS 

Nanomaterial Preparation and Characterization.  

Twelve nanomaterials that differed in core structure and surface functionalization 

were used for these experiments, and were obtained through synthesis or from a 

manufacturer (See Table S1 for more information).   

Synthesized CNMs 

Six fullerenes with various derivatives were synthesized at the University of 

Wisconsin Milwaukee (Figure S1). A detailed description of synthesis and purification is 

included in the supplementary material (Figure S2 and S3). 

• Derivative 1 (C60-βCD): supramolecular complex of C60 with β-cyclodextrin 

(βCD):  C60 (100 mg, 0.139 mmol) and βCD (660 mg, 0.582 mmol) were ground in 

an agate mortar for 1 h to give a uniform brown powder. The resulting powder was 

then dissolved in 1 L of deionized water followed by 1 h bath sonication. 
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• Derivative 2 (C60-amino):  amino-substituted methanofullerene derivative: 

synthesized and characterized according to literature [18-21]. Derivative 2 (50.0 mg, 

0.045 mmol) was dissolved in 1 L of deionized water followed by 1 h bath sonication. 

• Derivative 3 (C60-amino-γCD): supramolecular complex of amino-substituted 

methanofullerene derivative with γCD: Derivative 2 (50.0 mg, 0.045 mmol) and γCD 

(58.8 mg, 0.060 mmol) were ground in an agate mortar for 1 h to give a uniform 

brown powder. The resulting powder was then dissolved in 1 L of deionized water 

followed by 1 h bath sonication. 

• Derivative 4 (C60-malonic acid):  malonic acid derivative of C60, synthesized and 

characterized according to literature [18-21]. 

• Derivative 5 (C60-malonate): disodium malonate derivative of C60. Derivative 4 

(50.0 mg, 0.061 mmol) was dissolved first in 0.01 M NaOH (6.1 mL) and then diluted 

to 1 L of deionized water followed by 1 h bath sonication. 

• Derivative 6 (C60-malonate-γCD): supramolecular complex of disodium malonate 

derivative of C60 with γCD. Derivative 4 (50.0 mg, 0.061 mmol) and γCD (78.9 mg, 

0.081 mmol) were ground in an agate mortar for 1 h to give a uniform brown powder. 

The resulting powder was then dissolved in 0.01 M NaOH (6.1 mL) and diluted to 1 

L, followed by 1 h bath sonication. 

Cyclodextrins were non-covalently bound to fullerenes by van der Waals forces, 

and the electronic structures of the cyclodextrin-derivatized fullerenes remain basically 

unchanged from the equivalent fullerenes without cyclodextrin. All reagents and solvents 

were used as received unless otherwise noted.  

Purchased CNMs 
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Seven types of nanomaterial powders were obtained from five manufacturers and 

suspended in milli-Q water. C60 was suspended in milli-Q water by stirring for two 

weeks at 600 RPM. The remaining particle types were suspended in milli-Q water by 

sonication for two hours in a water bath. All particle types were sonicated for five 

minutes before use in exposures. These include fullerenes (C60), hydroxylated fullerenes 

(C60-OH24), single-walled carbon nanotubes (SWCNTs), carboxylic acid functionalized 

SWCNTs (SWCNT-COOH), carboxy-amide functionalized SWCNTs (SWCNT-

CONH2), polyethylene glycol functionalized SWCNTs (SWCNT-PEG), and multi-walled 

carbon nanotubes (MWCNTs).  Suspension methods did not involve any additional 

solvents or surfactants as these are known to affect the way the particles interact with 

biological systems.[11] SWCNTs were prepared by the electronic arc discharge method, 

and carbonaceous purity information is included in Table  S1.  

Nanomaterial Characterization 

All particle suspensions were characterized using transmission electron 

microscopy (TEM) to evaluate aggregate size distribution, dynamic light scattering 

(DLS) with a Zetasizer from Malvern Instruments (Worcestershire, UK) to evaluate 

suspension stability, and particle tracking with a Nanosight (Wiltshire, UK) to evaluate 

particle aggregate size distribution in real time within our media. DLS was conducted in 

milli-Q water and MHRW to measure stability in both types of medium. Inductively 

coupled plasma mass spectroscopy (ICPMS) was performed by Pace Analytical (St. 

Rose, LA) to evaluate metal catalyst residue in the stock suspensions. Samples underwent 

an acid digestion process prior to measurement by ICPMS [22].  

Daphnia Cultures and Toxicity Assays  
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Daphnia magna were obtained from a culture in the Klaper laboratory and 

maintained with a 16:8 light/dark cycle at 20 °C according to the OECD Guidelines for 

Testing of Chemicals (1998) [23]. They were kept in moderately hard reconstituted water 

(MHRW)[24] and fed a combination of freshwater algae (Selenastrum capricornutum) 

and alfalfa (Medicago sativa). Fluorescent lights that emit in the visible spectrum were 

used for stock cultures and experiments.  

D. magna were exposed to 0, 10, or 50 ppm concentrations of carbon 

nanomaterials that were purchased directly from a manufacturer, and to 0, 1, and 5 ppm 

concentrations of particle types that were synthesized on campus (derivatives 1-6), due to 

limitations in the quantity nanomaterials. Concentrations below 50 ppm were chosen 

because they were determined to be sub-lethal based on a series of LC50 values that were 

calculated from acute exposures of Daphnia to similar nanomaterials in previous work in 

our laboratory [15]. Exposures were 21 days with static renewal, where neonates were 

placed in either 100 mL of control (MHRW only) or nanoparticles (0-50 ppm in MHRW) 

and medium was changed out three times per week. Mortality and reproductive output 

were measured during the suspension changes. Daphnid size was measured as the length 

of the daphnid from the top of the head to the base of the apical spine at day 21. 

Additional controls were conducted to determine any impacts from the catalyst 

used to create the carbon nanotubes.  A sample of the catalyst was obtained from Carbon 

Solutions Inc. and suspended in milli-Q water by sonication for two hours in a water bath 

to replicate the conditions of SWCNT suspensions. Concentrations of the catalyst 

exposures were designed to replicate the highest concentration nickel exposure the 

daphnids received from nanomaterial experiments (184 ppb Ni from 50 ppm 
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unfunctionalized SWCNT exposures). Free ligand control experiments were also 

conducted with βCD and γCD, and these ligands were suspended into media in the same 

manner and at the same concentrations as those found in the nanoparticle suspensions. No 

chronic toxicity (reproduction, growth, or mortality) was associated with any of the 

catalyst, βCD or γCD exposures. Additionally, PEG functional attachments have been 

previously shown to be non-toxic to organisms [25, 26]. 

Experiments were optimized to meet the mortality and reproduction requirements 

outlined by the OECD Guidelines for the Testing of Chemicals [23]. Modifications were 

made to the exposures to compensate for variation introduced by population density by 

removal of proportionate volumes of medium and food from the exposures as mortality 

occurred. Daphnids were kept at a concentration of one daphnid per 20 mL medium with 

a food concentration of 400,000 algal cells/mL medium. Total reproductive output was 

calculated for the number of surviving individuals at the time of measurement and then 

reported as the average number of neonates produced per surviving individual. 

Statistical Analysis 

Reproduction and growth measurements were normalized to the total control 

average to adjust for variation in these parameters over the time period of the experiment. 

Not all data adhered to assumptions of normality for independent t-test analysis, so the 

effects of nanomaterials on daphnid mortality, reproduction, and adult size were 

compared to controls by non-parametric Mann-Whitney U tests for two-independent 

samples. Values were determined to be significant at p < 0.05.   

 

RESULTS 
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Tables that summarize the nanomaterial characterization and toxicity assay results are in 

supplementary information.  

Nanomaterial Characterization. 

Using TEM, DLS, and Nanosight analysis, fullerene suspensions were shown to 

be polydispersed with the presence of many particles less than 100 nm in diameter in the 

suspensions. Average hydrodynamic diameters for the fullerene suspensions ranged from 

105-175 nm in size (Table S2). Reliable aggregate size measurements could not be 

obtained for nanotube suspensions. However, TEM images showed the presence of 

individual nanotubes, as well as aggregates of nanotubes larger than one micron in the 

suspensions (Figure S4). SWCNT, MWCNT, and C60-amino were not stable in 

suspensions with milli-Q water (zeta potential < |30| mV), while the rest of the 

functionalized fullerenes and nanotubes were stable in milli-Q water (zeta potential > |30| 

mV). Stability decreased when the nanomaterials were added to MHRW (Table S3); 

however, the stability of nanomaterials in MHRW-only is not representative of particle 

stability in the exposure medium, as the presence of algae and alfalfa significantly 

improved the stability of nanomaterials in suspension. 

ICPMS analysis indicated the presence of metals in some of the particle 

suspensions (Table S1). Fullerenes were synthesized with an iron catalyst, and ICPMS 

indicated the presence of iron, strontium, and copper in the stock suspensions. Carbon 

nanotubes were synthesized with a nickel/yttrium catalyst, and ICPMS indicated the 

presence of nickel in nanotube stock suspensions between 60 and 368 ppb.  This was not 

surprising, as the manufacturer reported the presence of metals in their nanotubes 

determined by thermogravimetric analysis (4-8% for SWCNTs, 5-8% for SWCNT-
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COOH, 3-6% for SWCNT-PEG, and 5-8% for SWCNT-CONH2). In addition, 

supernatant from unfunctionalized SWCNT and MWCNT was examined by ICPMS, and 

concentrations of nickel were found in supernatant samples, indicating the release of 

nickel ions into the medium.  However, concentrations of nickel in SWCNT and 

MWCNT supernatant samples were significantly lower (73.3 and 15.0 ppb Ni) than 

concentrations from the nanomaterial suspensions themselves. A catalyst-only control 

experiment showed no significant changes to daphnid mortality, reproduction, and size in 

response to catalyst exposures of 200 ppb nickel. However, it is possible that a 

synergistic action of the combination of nickel and nanotube exposures could enhance 

toxicity of nanomaterials to Daphnia, but this has yet to be shown.  

Impact of Carbon Nanomaterials on Acute and Chronic Mortality.   

No significant acute mortality (< 48 hr) was observed for any of the particle types 

at the tested concentrations, as doses were chosen to be below LC50 values calculated 

from acute exposures of a subset of CNMs [15, 27]. Differential mortality was observed 

for some particle types after an extended exposure period. C60-amino-γCD and C60-

malonate-γCD induced significant mortality to daphnids (60% mortality, U=13.5, p < 

0.05 and 55% mortality, U=0, p < 0.05) at 5 ppm after 7 and 10 days (Figure 1). In 

contrast, γCD controls induced no mortality and the equivalent exposures of particle 

types without γCD (C60-amino and C60-malonate) induced no mortality, indicating a 

toxic action specifically associated with fullerenes bound to γCD. When lowered to 1 

ppm, C60-amino-γCD exposure induced significant mortality to daphnids after 19 days 

(U=23.5, p < 0.05), while C60-malonate-γCD induced no significant mortality after 21 

days. Of the carbon nanotubes, only 50 ppm MWCNTs induced significant mortality to 
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daphnids (20% mortality after 19 days, U=70.5, p < 0.05).  None of the other treatments 

induced significant mortality to daphnids. 

Impact of Carbon Nanomaterials on Reproduction.  

Reproduction over time was significantly impacted by SWCNT treatments 

compared to reproduction in control daphnids (Figure 2a). After nine days of exposure, 

an average of 7.06 neonates were produced per control daphnid. However, during this 

time frame significantly fewer neonates were produced by daphnids exposed to 50 ppm 

concentrations of SWCNT (2.23 neonates per daphnid, U=0, p < 0.05), SWCNT-COOH 

(zero neonates per daphnid, U=0, p < 0.05), and SWCNT-PEG (0.18 neonates per 

daphnid, U=7.5, p < 0.05). Fullerene-based particles and MWCNTs did not show any 

differences in reproduction compared to controls after nine days of exposure.   

At 21 days, several types of CNMs altered reproductive output in daphnids, and 

core structure was an important parameter that influenced daphnid reproduction (Figure 

2b). All of the unfunctionalized CNMs (C60, SWCNT, MWCNT) significantly lowered 

reproduction at 50 ppm compared to control daphnids (reduction of 11%, U=0, p < 0.05; 

reduction of 46.5%, U=0, p < 0.05; reduction of 35.4%, U=25, p < 0.05). In addition, C60 

was significantly less toxic to daphnid reproduction compared to carbon nanotubes. 

Daphnids from 50 ppm C60 produced an average of 62.58 neonates. In contrast, daphnids 

from 50 ppm SWCNT and MWCNT exposures produced 24.9 and 17.1 neonates (U=6, p 

< 0.05 and U=15, p < 0.05). Differences in reproduction relative to core structure were 

not significant at concentrations below 50 ppm (p > 0.05).  

Fullerene functionalization increased or decreased reproduction in Daphnia, 

depending on concentration and the type of functional attachment (Figure 2c). While 
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unfunctionalized fullerenes significantly reduced reproduction by 11%, daphnids from 50 

ppm C60-OH exposures did not exhibit any changes in reproduction compared to 

controls (p > 0.05), indicating that functionalization with hydroxyl groups decreases the 

toxicity of fullerenes to daphnid reproduction. While C60 did not significantly alter 

daphnid reproduction compared to controls below 50 ppm, exposure of daphnids to 5 

ppm C60 malonate and C60-amino-γCD significantly changed reproduction compared to 

controls. Daphnids from 5 ppm C60-malonate exposures increased reproduction by 

25.5% compared to control daphnids (U=9.5, p < 0.05). Reproduction could not be 

evaluated in equivalent particle types C60-malonate-γCD and C60-amino-γCD at 5 ppm 

because the exposure induced 100% mortality to daphnids after 17 days. However, 

daphnids from 1 ppm C60-amino-γCD exposures produced 13.7% fewer neonates 

compared to controls (U=6, p < 0.05).  

Functionalized SWCNTs also influenced toxicity to daphnid reproduction (Figure 

2d). Significant decreases in reproduction were observed in daphnids exposed to 10 and 

50 ppm SWCNT-COOH (reduction of 24.6%, U=1, p < 0.05 and 58.7%, U=0, p < 0.05) 

compared to control daphnids. Daphnids exposed to SWCNT-CONH2 and SWCNT-PEG 

significantly reduced reproduction only at 50 ppm compared to controls (reduction of 

35.9%, U=0, p < 0.05 and 30.3%, U=25, p < 0.05). A comparison of reproduction in 

daphnids from unfunctionalized SWCNTs to functionalized SWCNTs yielded no 

significant differences in reproduction; however, daphnids from SWCNT-CONH2 and 

SWCNT-PEG produced 55.0% and 68.7% more neonates than daphnids from 50 ppm 

SWCNT-COOH exposures (U=1, p < 0.05 and U=4, p < 0.05). This indicates that 
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CONH2 and PEG functional attachments make SWCNTs less toxic to daphnid 

reproduction than COOH attachments.  

Impact of Carbon Nanomaterials on Adult Daphnid Size 

 Exposure of daphnids to 50 ppm C60, SWCNT, and MWCNT reduced daphnid 

size by 6.6%, 12.4%, and 8.2% compared to controls (U=32, p < 0.05; U=0, p < 0.05; 

U=19, p < 0.05) (Figure 3a). Daphnid size was also significantly decreased in 10 ppm 

SWCNT and MWCNT exposures (reduction of 7.9%, U=9, p < 0.05 and reduction of 

4.6%, U=36, p < 0.05). C60 did not significantly alter daphnid size compared to controls 

at 10 ppm. Daphnids exposed to 50 ppm C60 were 6.6% larger in size than daphnids 

exposed to 50 ppm SWCNTs (U=7, p < 0.05).  

 Fullerene functionalization influenced daphnid size, depending on the type of 

functionalization and concentration. Daphnid size in 50 ppm C60-OH treatments was not 

significantly different from controls (p > 0.05), indicating that functionalization of C60 

with hydroxyl groups can mitigate the toxicity of C60 to daphnids. Daphnids exposed to 

5 ppm C60-amino and C60-malonate were 3.4% and 5.5% smaller in size than control 

daphnids (U=8, p < 0.05 and U=12, p < 0.05).  No other fullerene particle types induced 

changes to adult daphnid size.   

 Functionalization influenced the toxicity of SWCNTs to adult daphnid size 

(Figure 3b). Daphnids exposed to 50 ppm SWCNT, SWCNT-CONH2, SWCNT-COOH, 

and SWCNT-PEG were 12.4%, 7.4%, 17.7%, and 10.2% smaller in size than control 

daphnids (U=0, p < 0.05; U=0, p < 0.05; U=0, p < 0.05; U=0, p < 0.05). Daphnids 

exposed to 10 ppm SWCNT and SWCNT-COOH also exhibited significant decreases in 

size compared to controls (reduction in size of 7.9%, U=9, p < 0.05 and reduction in size 



www.manaraa.com

	  

	  

28	  

of 10.0%, U=0, p < 0.05). When the size of daphnids from functionalized SWCNT 

expsoures (SWCNT-CONH2, SWCNT-COOH, SWCNT-PEG) was compared to the size 

of daphnids from unfunctionalized SWCNTs, no significant differences were observed. 

However, daphnids from 50 ppm SWCNT-COOH exposures were 12.3% smaller in size 

than daphnids from 50 ppm SWCNT-CONH2 exposures (U=0, p < 0.05), indicating that 

SWCNT-COOH is more toxic to daphnid size than SWCNT-CONH2.    

 

DISCUSSION 

Acute Assays Do Not Predict Chronic Impacts of CNM Exposure 

Our data indicate that acute assays are not sufficient for predicting chronic 

toxicity of CNMs. None of the CNMs in this investigation exhibited significant toxicity 

to daphnids over an acute period, but many impacted chronic mortality, reproduction, and 

adult size at these concentrations over longer exposure periods. In addition, daphnid 

responses to nanomaterial treatments varied more over longer exposure periods, 

indicating that chronic assays may provide a better indication of the differences in the 

mechanism of toxicity of nanomaterials of differing core structures and surface 

chemistries. The mechanism of action of nanomaterials may not be accurately captured 

with acute, high-dose exposures, especially when these materials are modified with 

coatings, proteins, and functional groups that may act with individual receptors in an 

organism. Increased sensitivity of chronic toxicity tests with lower exposure 

concentrations is evident in other studies with different toxicants [28]. In our previous 

studies, sub-lethal concentrations of fullerenes and nano-sized titanium dioxide were 

found to alter daphnid behavior, another sub-lethal endpoint, making daphnids more 
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visible to predators and with possible increases in metabolic costs [29]. These results may 

be missed by acute toxicity assays and traditional LC50 values.   

Core Structure Impacts Nanomaterial Toxicity 

 Nanomaterial toxicity significantly differed depending on the core structure of the 

nanomaterial. The unique structuring of carbon in SWCNTs, MWCNTs, and nC60 leads 

to different aggregate size distributions, surface areas, and physical and chemical 

properties, which may have an impact on toxicity. Unfunctionalized carbon nanotubes 

(SWCNT and MWCNT) were more toxic to daphnids than unfunctionalized fullerenes 

(C60), with more significant impacts to mortality, reproduction and size. Other studies 

indicate different levels of toxicities of MWCNTs, but this is likely due to variations in 

surface chemistry from our MWCNTs30 and the presence of natural organic matter in one 

of the studies.31 Variation in the stability of the suspensions could account for some of the 

differential toxicity observed for these unfunctionalized CNMs. Zeta potential for the 

nC60 suspension was -40 mV, indicating that it is more stable in milli-Q water compared 

to SWCNTs and MWCNTs (+23 mV for both). Less stable nanotube suspensions contain 

larger aggregates, and it is possible that SWCNT and MWCNT suspensions aggregate, 

and are therefore more difficult for daphnids to eliminate [30], as opposed to smaller 

particulates or aggregates, which have been shown to be eliminated within 24 hours [31]. 

Nanomaterials may also interfere with feeding mechanics. Nanomaterials may also 

interfere with feeding mechanics. A study on the impacts of suspended clay particles less 

than 2 µm in diameter on Daphnia magna indicated that ingested clay particles reduce the 

beating rate of the feeding appendage and interfere with the uptake of algae by Daphnia, 

thereby reducing fitness of the daphnids by decreasing ingestion of algae [32]. Although, 
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unfunctionalized carbon nanotubes used in these suspensions had lengths over 5 µm and 

large aggregates (> 1 µm diameter) in the suspensions that are readily seen within the gut 

of the Daphnia. It is possible that unfunctionalized carbon nanotubes physically interfere 

with uptake and feeding of algae by daphnia. 

Effects of Variations in Surface Chemistry 

Surface chemistry impacted both fullerene and carbon nanotube toxicity, and 

either increased or decreased toxicity of these particle types depending on the functional 

attachment. The type of functionalization had a significant impact on the toxicity of 

SWCNTs. Daphnids exposed to SWCNT-COOH produced significantly fewer neonates 

at lower concentrations than daphnids exposed to SWCNT-CONH2 or SWCNT-PEG.  

This indicates that carboxylation of SWCNTs increases their toxicity to daphnids, while 

functionalization with CONH2 or PEG decreases SWCNT toxicity to daphnids. Although 

all three functionalizations improve the dispersability and stability of SWCNTs in 

biological media, carboxylated SWCNTs are shown to have more amorphous carbon 

fragments as a result of increased oxidation of carbon, and these amorphous fragments 

can induce higher levels of toxicity to biological systems [33]. SWCNT-COOH have 

been shown to inactivate bacteria [34] (a potential food source for daphnids) [35] and 

produce reactive oxygen species [36]. In contrast, SWCNT-CONH2 and SWCNT-PEG 

have previously been shown to be less toxic in general [26, 37].  

Fullerene toxicity also varied with surface functionalization and bonding 

chemistry. Unfunctionalized fullerenes decreased reproduction and growth at a 

concentration of 50 ppm.  Hydroxylation of fullerenes improved this outcome, as no 

significant effects to reproduction or growth were observed compared to controls at the 
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same concentration. Fullerene hydroxylation has been previously shown to decrease 

fullerene toxicity in vitro [13] and in vivo [38], and these results are in agreement with 

the decreased toxicity observed with daphnids exposed to C60-OH in this study. In 

contrast, fullerenes with disodium malonate (C60-malonate) significantly increased 

daphnid reproduction at 5 ppm compared to control daphnids, indicating a positive effect 

of this nanoparticle type on daphnid reproduction.  Literature indicates the ability of C60 

malonate derivatives to improve antioxidant enzymatic activity in microglia after insult 

with LPS [39], and these malonate-derived fullerenes have potential applications in 

medicine [40]. 

Although carbon nanotubes as a whole induced more consistent decreases in 

reproduction and size in daphnids, fullerene derivatives that were attached to γCD by 

non-covalent bonds were the most toxic particle types that were investigated in this 

experiment. C60-amino-γCD and C60-malonate-γCD induced 100% mortality to 

daphnids at a concentration as low as 5 ppm. Previous research on cyclodextrins 

highlights their ability to increase the bioavailability of insoluble substrates, and they are 

used as drug solubilizers and carrier systems [41]. It is possible that γCD bound fullerene 

derivatives are more bioavailable to daphnids compared to fullerene derivatives that are 

not bound to γCD, thereby increasing the toxicity of γCD bound fullerene derivatives.  

Effects of Particle Size, Charge, and Potential Byproducts 

 Much of the toxicity that was observed in this experiment did not reveal any 

patterns regarding aggregate size and suspension stability. Nanomaterial size has been 

shown to be important for toxicity of TiO2 nanoparticles [42], and previous work in our 

laboratory also indicated increased mortality of daphnids exposed to smaller size 



www.manaraa.com

	  

	  

32	  

fractions of TiO2 nanoparticles and fullerenes [27]. Surface charge has been shown to 

significantly influence the mechanism of cytotoxicity of gold nanoparticles [43] and of in 

vivo toxicity of quantum dots [44]. In addition, characteristics of nanomaterials like size, 

surface charge, and functionalization can influence suspension stability and aggregation 

state, with further implications for nanomaterial transport and fate [45, 46]. Our 

experimental design specifically avoided the use of surfactants and dispersants because 

these chemicals can change how the nanomaterials interact with biological systems. As a 

consequence, our suspensions were polydisperse with a wide range of aggregate sizes and 

particle stabilities. Despite the settling of some particles out of suspension, daphnids are 

continuously exposed to the particles for the duration of the experiment.  Daphnids are 

known to swim to the bottom of the beaker to pick up algae, and nanoparticles could be 

visually observed in the gut during the exposure.  

Some patterns were found between size and toxicity for the nanomaterials used in 

this study. Carbon nanotube aggregates were larger than fullerene aggregates, and carbon 

nanotubes were more consistently toxic to daphnid reproduction and size than particles 

with fullerene cores.  As discussed above, this could be a result of interference with food 

consumption or nutrient uptake, but could also be a result of differences in uptake of the 

nanomaterials themselves. Daphnia are known to selectively graze phytoplankton [47], 

and the presence of nanomaterials could interfere with their ability to select 

phytoplankton of optimal size or nutrient content.    

 Many particle types exhibited no patterns between particle size or particle charge 

and toxicity.  C60-malonate-γCD had the largest percentage (70.5%) of particles with 

diameters under 110 nm, while C60-amino-γCD had one of the smallest percentages 
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(36.6%) of particles with diameters under 110 nm, and both of these particle types were 

found to be highly toxic to daphnids at concentrations of 5 ppm and higher. SWCNT 

(zeta potential= 23.07 mV) and SWCNT-COOH treatments (zeta potential = -61.07 mV) 

had highly dissimilar zeta potential values, however they both significantly decreased 

daphnid reproduction and body length. C60-amino-γCD (zeta potential = -9.26 mV) and 

C60-malonate-γCD (zeta potential = -63.8 mV) also had dissimilar zeta potentials, 

however both particle types significantly increased daphnid mortality. The lack of 

toxicity patterns for size and stability in this diverse array of CNMs emphasize the 

importance of functionalization for evaluating carbon nanomaterial toxicity. The results 

of this study indicate that the actual chemistry of a carbon nanomaterial is an important 

factor for determining nanomaterial toxicity.  

 It is possible that the observed toxicity associated with these materials could be a 

result of other mechanisms.  Carbon nanotubes have been shown to generate oxidative 

byproducts under high-energy ultraviolet lights that emit in the solar spectrum [48]. 

However, the lights used in these experiments were fluorescent lights that emit in the 

visible spectrum, and therefore the photo-generation of oxidative species in our 

suspensions is unlikely. In addition, there is evidence that UV light becomes significantly 

attenuated at depths of four to six centimeters in freshwater samples that are not purified 

and contain phytoplankton and organic matter [49].  An investigation of the formation of 

superoxides in our carbon nanotube suspensions was conducted by measuring the 

oxidatively reduced XTT product at 470 nm. Results indicated that superoxides are not 

present in our suspensions. Nanomaterials could also be toxic to algae, which could 

consequently affect the daphnids. A recent study indicates that while there is some 
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affinity of algal particles (P. subcapita) to the surface of carbon nanotubes, the algae 

remains viable, as no changes in cell physiology were observed and photosynthetic 

activity was still present [50]. Although this study indicated that there was growth 

inhibition of algae associated with carbon nanotubes, this would not impact our current 

study, as fresh algae was provided every other day when media was refreshed.  

Population level effects of CNMs 

Changes in daphnid fitness upon nanomaterial exposure are important because 

zooplankton and aquatic invertebrates are important players in lower trophic structures, 

and they have a fundamental role in the success of higher organisms, such as fish. 

Therefore, if CNMs lead to damage of invertebrate populations in a freshwater 

environment, the effect could be felt at multiple trophic levels of an ecosystem. 

Physiological effects of a toxicant on reproductive output and growth can have a 

significant effect on population endpoints such as population size and population growth 

[51], and therefore the fact that the investigated CNMs impact reproduction and adult size 

is an important result. Nanomaterials may impact energy allocation or alter metabolic 

costs of processing toxins. Nanomaterials could also influence specific biochemical 

pathways (such as vitellogenin production, oxidative stress, or chitin production) that are 

more difficult to measure, but may be very relevant to nanomaterial toxicity as they have 

been shown to be important with other toxicants [52]. More systems biology approaches 

to examine nanomaterial impacts would be valuable to elucidating mechanisms of action 

to better identify ways to create nanomaterials that do not create negative environmental 

impacts.  
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The use of CNMs in industry has the potential to generate substantial 

technological advances [53]. However, the uncertainties surrounding CNM toxicity must 

be better resolved before these technological innovations can be fully realized. Scientists 

and engineers have synthesized CNMs with remarkable structural diversity for industrial 

applications, but these design variations have been shown to change particle toxicity to 

aquatic organisms [54]. Our results indicate that variations in core structure and surface 

chemistries of nanomaterials may result in different physiological and ecological impacts 

to freshwater ecosystems. More research is required to better understand the mechanism 

of differential nanomaterial toxicity described by these investigations to best protect 

freshwater invertebrate populations and the overall integrity of freshwater ecosystems. 

Identifying the characteristics of nanomaterials that make them more or less toxic is 

valuable for creating a sustainable technology.  Here we suggest that alterations in 

surface chemistry play a large role in doing this.  
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Supplementary Information 

Tables that summarize the nanomaterial characterization and results are in supplementary 

information. This includes images of fullerene derivatives 1-6 (Figure S1) and detailed 

methods for synthesis of fullerene derivatives 2-6 (Figure S2 and S3), TEM images 

(Figure S4), nanomaterial purity characterization (Table S1), size characterization (Table 

S2), stability characterization (Table S3), and results summaries for chronic daphnid 

mortality, reproduction, and adult size (Table S4). 
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CHAPTER 2 FIGURES 

 

 
 
Figure 1   Impacts of γCD-bound fullerene derivatives to chronic daphnid mortality. 

Mortality evaluated by the Mann Whitney U test for two independent samples.  Data are 

significant at p<0.05 and starts indicate significant difference compared to control. GCD 

indicates gamma cyclodextrin.  (A) Daphnid mortality after chronic exposure to 5 ppm 

C60-amino and C60-amino-GCD.  (B) Daphnid mortality after chronic exposure to 5 

ppm C60-malonate and C60-malonate-GCD.  
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Figure 2    Impacts of CNM exposure on daphnid reproduction.  Reproduction 

evaluated by Mann Whitney U test for two independent samples.  Data are significant at 

p<0.05. Stars indicate significant difference from control.  Letters indicate significant 

difference among treatments and controls.  (A) Impact of 50 ppm SWCNT, SWCNT-

CONH2, SWCNT-COOH, and SWCNT-PEG over time. (B) Impact of unfunctionalized 

CNMs on reproduction at 21 days. (C) Impact of derivatized fullerenes on daphnid 

reproduction at 21 days.  (D) Impact of unfunctionalized and functionalized SWCNTs on 

daphnid reproduction at 21 days. 

 
 
 
 



www.manaraa.com

	  

	  

43	  

 
 
Figure 3   Impacts of CNM exposure on adult daphnid size. Adult size evaluated by 

Mann Whitney U test for two independent samples.  Data are significant at p<0.05.  

Letters indicate significant difference among treatments and controls.  (A) Impact of 

unfunctionalized CNMs on adult daphnid size at 21 days.  (B) Impact of unfunctionalized 

and functionalized SWCNTs on adult daphnid size at 21 days.  
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CHAPTER 2 SUPPLEMENTARY INFORMATION  

Core structure and surface functionalization of carbon nanomaterials alter impacts to 

daphnid mortality, reproduction, and growth:  Acute assays do not predict chronic 

exposure impacts 
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Figure	  S1	  
	  

	  
	  
	  
	  
Figure S1  Synthesis of fullerene derivatives. Derivative 1 indicates supramolecular 

complex of C60 with β-cyclodextrin (βCD); Derivative 2 indicates amino-substituted 

methanofullerene; Derivative 3 indicates supramolecular complex of amino-substituted 

methanofullerene derivative with γCD; Derivative 4 indicates malonic acid fullerene 

derivative (derivative 4 was an intermediate to synthesize 5 and 6.  It was not used for 

exposures); Derivative 5 indicates disodium malonate derivative of C60; Derivative 6 

indicates supramolecular complex of disodium malonate derivative of C60 with γCD.   
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Figure	  S2	  
	  

Synthesis	  of	  C60-‐amino	  
Maika	  Lor	  and	  Jian	  Chen	  

	  
Scheme	  1	  

	  
a. Pyridine,	  CHCl2,	  4	  hrs.	  
b. C60,	  CBr4,	  DBU,	  toluene,	  sonicate,	  30	  min.	  
c. TFA,	  toluene,	  3	  hrs.	  

	  
1:	  	  2.50	  g	  (14.3	  mmol)	  of	  tert-‐butyl	  N-‐(3-‐hydroxypropyl)carbamate	  was	  added	  to	  a	  pre-‐
dried	  flask	  and	  dissolved	  with	  125	  mL	  of	  methylene	  chloride.	  	  0.99	  g	  (7.15	  mmol)	  of	  
malonyl	  chloride	  and	  1.16	  mL	  (14.3	  mmol)	  of	  pyridine	  were	  added	  to	  the	  flask	  under	  
Argon	  and	  stirred	  for	  4	  hours	  at	  room	  temperature.	  	  TLC	  showed	  the	  product	  with	  an	  Rf	  
of	  0.40	  (silica	  gel,	  1:1	  hexane/ethyl	  acetate).	  	  The	  product	  was	  purified	  by	  column	  
chromatography	  on	  silica	  gel	  using	  1:1	  hexane/ethyl	  acetate	  solvent.	  	  2.98	  g	  (50.9%)	  of	  
product	  was	  obtained	  after	  drying.	  
1H-‐NMR	  (300	  MHz,	  CDCl3):	  δ	  (ppm)=4.89	  (s,	  2H),	  4.22	  (t,	  4H),	  3.40	  (s,	  2H),	  3.20	  (q,	  4H),	  
1.86	  (m,	  4H),	  1.44	  (s,	  18H).	  [1]	  	  
	  
2:	  	  0.25g	  (0.347	  mmol)	  of	  C60	  and	  0.17	  g	  (0.521	  mmol)	  of	  CBr4	  was	  added	  to	  a	  pre-‐dried	  
flask	  and	  dissolved	  with	  170	  mL	  of	  toluene,	  followed	  by	  30	  seconds	  of	  sonication.	  	  The	  
fullerene	  was	  fully	  dissolved	  after	  30	  minutes	  of	  stirring.	  	  0.22	  g	  (0.521	  mmol)	  of	  1	  and	  
0.16	  g	  (1.05	  mmol)	  of	  1,8-‐diazabicycloundec-‐7-‐ene	  were	  added	  to	  the	  flask	  under	  Argon	  
and	  stirred	  for	  30	  minutes	  at	  room	  temperature.	  	  TLC	  showed	  the	  product	  with	  an	  Rf	  of	  
0.08	  (silica	  gel,	  100:5	  toluene/ethyl	  acetate).	  	  The	  product	  was	  purified	  by	  column	  
chromatography	  on	  silica	  gel	  using	  toluene	  to	  remove	  unreacted	  C60,	  followed	  by	  10:1	  
toluene/ethyl	  acetate.	  	  0.20	  g	  (50.6%)	  of	  product	  was	  obtained	  after	  drying.	  
1H-‐NMR	  (300	  MHz,	  CDCl3):	  δ	  (ppm)=4.90	  (s,	  2H),	  4.58	  (t,	  4H),	  3.32	  (q,	  4H),	  2.06	  (m,	  4H),	  
1.46	  (s,	  18H).	  [1]	  
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3	  (Type	  C1,	  C60-‐amino):	  	  175	  mg	  (0.154	  mmol)	  of	  2	  was	  dissolved	  in	  35	  mL	  of	  toluene,	  
then	  35	  mL	  of	  triflouroacetic	  acid	  was	  added.	  	  The	  reaction	  was	  stirred	  for	  3	  hours	  at	  
room	  temperature.	  	  	  The	  solvent	  was	  removed.	  	  The	  solid	  residue	  was	  washed	  with	  
toluene	  to	  remove	  any	  trace	  of	  starting	  material	  and	  dried	  under	  vacuum	  to	  obtain	  155	  
mg	  (91.7%)	  of	  product.[1][2]	  
	  
References:	  

(1) Richardson,	  C.	  F.;	  Shuster,	  D.	  I.;	  Wilson,	  S.	  R.	  Org.	  Lett.	  	  2000,	  2,	  1011-‐1014.	  
(2) Kordatos,	  K.;	  Ros,	  T.	  D.;	  Bosi,	  S.;	  Vazquez,	  E.;	  Bergamin,	  M.;	  Cusan,	  C.;	  Pellarini,	  F.;	  Tomberli,	  V.;	  

Baiti,	  B.;	  Pantarotto,	  D.;	  Georgakilas,	  V.;	  Spalluto,	  G.;	  Prato,	  M.	  	  J.	  Org.	  Chem.	  2001,	  66,	  4915-‐
4920.	  

	  
	  
Scheme	  2	  (Our	  own	  procedure)	  
	  

	  
	  

	  
	  
	  
	  
	  
	  
	  

	  
d. Grinding	  

	  
	  
4	  (Type	  C-‐2,	  C60-‐amino-‐GCD):	  	  20.0	  mg	  of	  fullerene	  (type	  C-‐1)	  and	  23.5	  mg	  of	  γ-‐
cyclodextrin	  were	  ground	  for	  1h	  to	  give	  a	  uniform	  brown	  powder.	  	  The	  brown	  powder	  
was	  dissolved	  in	  400	  ml	  of	  deionized	  water	  followed	  by	  30	  min	  of	  bath	  sonication	  to	  give	  
a	  yellow-‐brown	  solution	  of	  4(0.05	  mg	  fullerene/ml;	  0.06	  mg	  γ-‐CD/ml).	  
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Figure	  S3	  
	  

Synthesis	  of	  C60-‐malonate	  
Maika	  Lor	  and	  Jian	  Chen	  

	  
Scheme	  1	  

	  
e. NaH,	  toluene,	  room	  temperature,	  6.5	  hours	  
f. NaH,	  toluene,	  60°C,	  3	  hours	  
g. 1	  M	  NaOH,	  sonication	  

	  
1:	  	  100	  mg	  (0.139	  mmol)	  of	  fullerene	  C60	  was	  added	  to	  a	  pre-‐dried	  three-‐neck	  flask	  and	  
dissolved	  with	  46	  ml	  of	  toluene.	  	  49.8	  mg	  (0.208	  mmol)	  of	  diethyl	  bromomalonate	  and	  
33.4	  mg	  (1.39	  mmol)	  of	  NaH	  were	  added	  to	  the	  solution	  under	  Argon.	  	  After	  6.5	  hours	  of	  
stirring	  at	  room	  temperature,	  the	  reaction	  was	  hydrolyzed	  with	  2	  drops	  of	  2N	  H2SO4,	  
dried	  with	  MgSO4.	  	  After	  filtering	  the	  MgSO4,	  the	  solvent	  was	  removed	  by	  rotovap	  at	  
60°C.	  	  TLC	  showed	  the	  product	  with	  an	  Rf	  (silica	  gel,	  toluene)	  of	  0.7.	  	  The	  product	  was	  
purified	  by	  column	  chromatography	  on	  silica	  gel	  using	  1:1	  hexane/toluene	  solvent.	  	  
After	  column	  separation,	  the	  material	  was	  dissolved	  in	  CHCl3	  and	  precipitated	  with	  
ethanol	  to	  obtain	  55.5	  mg	  (46	  %	  yield)	  of	  the	  product	  after	  drying.	  	  
FT-‐IR	  (KBr):	  νmax	  (cm

-‐1)	  =2979,	  1745	  (C=O),	  1428	  (C60),	  1295,	  1266,	  1234,	  1206,	  1186	  
(C60),	  1095,	  1061.	  	  	  
1H-‐NMR	  (300	  MHz,	  CDCl3):	  δ	  (ppm)=4.57	  (q,	  4H),	  1.50	  (t,	  6H).	  [1]	  	  
	  
2	  (Type	  D-‐1,	  intermediate	  to	  C60-‐malonate):	  	  50	  mg	  (56.9	  µmol)	  of	  1	  was	  added	  to	  a	  
pre-‐dried	  flask	  and	  dissolved	  with	  25	  ml	  of	  toluene.	  	  27.4	  mg	  (1.14	  mmol)	  of	  NaH	  was	  
added	  under	  Argon.	  	  The	  mixture	  was	  stirred	  for	  3	  hours	  at	  60°C.	  	  Once	  the	  mixture	  was	  
cooled	  to	  room	  temperature,	  the	  salt	  was	  precipitated	  with	  0.5	  ml	  of	  methanol,	  causing	  
vigorous	  gas	  evolution.	  	  The	  precipitate	  was	  collected	  by	  centrifugation	  and	  washed	  
with	  toluene,	  2M	  H2SO4,	  and	  water,	  respectively.	  	  	  40.5	  mg	  (86%)	  of	  the	  product	  was	  
obtained	  after	  drying.	  [2]	  

	  
3	  (Type	  D-‐2,	  C60-‐malonate):	  	  20	  mg	  (24.31	  µmol)	  of	  2	  wad	  dispersed	  in	  397.7	  ml	  of	  
deionized	  water	  and	  2.3	  ml	  of	  0.01M	  NaOH	  solution	  by	  1h	  bath	  sonication	  to	  give	  a	  
yellow-‐brown	  suspension	  of	  3	  (0.05	  mg	  fullerene/ml).	  	  
	  
References:	  
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(3) Bingel,	  C.	  Chem.	  Ber.	  	  1993,	  126,	  1957.	  
(4) Lamparth,	  I.;	  Hirsch,	  A.	  J.	  Chem.	  Soc.,	  Chem.	  Commun,	  1994,	  1727.	  

	  
	  
	  
Scheme	  2	  (Our	  own	  procedure)	  
	  

	  
	  

	  
	  
	  

	  
	  
	  
	  

	  
a. Grinding	  
b. 1	  M	  NaOH,	  sonication	  

	  
	  
4	  (Type	  D-‐3,	  intermediate	  to	  C60-‐malonate-‐GCD):	  17.3	  mg	  of	  Fullerene	  (type	  D-‐1)	  and	  
27.28	  mg	  of	  γ-‐cyclodextrin	  were	  ground	  for	  1h	  to	  give	  a	  uniform	  brown	  powder.	  	  	  

	  
5	  (Type	  D-‐4,	  C60-‐malonate-‐GCD):	  The	  above	  brown	  powder	  (4,	  type	  D-‐3)	  was	  dissolved	  
in	  344	  ml	  of	  deionized	  water	  and	  2.0	  ml	  of	  0.01	  M	  NaOH	  solution	  by	  30	  min	  of	  bath	  
sonication	  to	  give	  a	  yellow-‐brown	  solution	  of	  5	  (0.05	  mg	  fullerene/ml	  ;	  0.08	  mg	  γ-‐
CD/ml).	  	  	  
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Figure	  S4	  

	  
	  
Figure S4 
TEM images of (A) C60 (B) C60-OH (C) C60-(βCD (D) SWCNT (E) SWCNT-CONH2 
(F) SWCNT-COOH (G) SWCNT-PEG (H) MWCNT.  
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Table S1:  Manufacturer Information and Purity Characterization 

 CNM Core 
  

Surface Chemistry Purity (%) ICPMS (ug/L) 
 

(1) C60 

 
none 99.5% 9.49 Fe 

0.1 Sr 
 

(2) C60  
 

hydroxyl 99% 34.6 Fe 
6.88 Cu 
 

(3) C60  
 

βCD 98% 20.1 Fe 
29.7 Cu 
 

(3) C60 
 

amino 98% 20.1 Fe 
29.7 Cu 
 

(3) C60 
 

amino-γCD 98% 20.1 Fe 
29.7 Cu 
 

(3) C60 malonate 98% 20.1 Fe 
29.7 Cu 
 

(3) C60 malonate-γCD 98% 20.1 Fe 
29.7 Cu 
 

(4) SWCNT 

 
none >90% 368.0 Ni 

73.3 Ni (supernatant) 
 

(4) SWCNT 

 
COOH 
 

>90% 212.0 Ni 

(4) SWCNT 

 

CONH2 
 

>90% 158.0 Ni 

(4) SWCNT 
 

PEG 
 

>90% 60.9 Ni 

(5) MWCNT 

 
none >95% 151.0 Ni 

15 Ni (supernatant) 
 

 
Column 1 denotes manufacturer (1Alfa Aesar, 2MER Corporation, 3UWM Chemistry, 
4Carbon Solutions Inc., and 5NanoAmor Inc.); Columns 2 and 3 denote core structure and 
surface chemistry; Column 4 denotes carbonaceous purity of the starting material as 
reported by the manufacturer; Column 5 metal content by ICPMs results. Detection limit 
(DL) for ICPMS is 5 ppb for Cu, 100 ppb for Fe, 1 ppb for Ni, 1 ppb for Sr. Method 
Detection Limit (MDL) for ICPMS is .024 ppb Cu, 5.27 ppb Fe, .024 ppb Ni, and .0548 
ppb Sr. Supernatants from unfunctionalized SWCNT and MWNCT were also examined 
by ICPMS and are noted in column 4 of the SWCNT and MWCNT rows.  
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Table S2:  Nanomaterial Size Characterization 

CNM 
Core  

Surface 
Chemistry 

Diameter 
Peaks (nm) 
 

Ave. Diameter 
(nm) 
 

% CNMs 
<110 nm 

C60 

 
none 117, 141 141 ± 59  40% 

C60  
 

hydroxyl 64, 137 144 ± 68 46.5% 

C60  
 

βCD 79, 114 107 ± 51 67.2% 

C60 
 

amino 65, 84 142 ± 73 46% 

C60 
 

amino-γCD 109, 150 152 ± 67  36.6% 

C60 malonate 
 

99, 164 175 ± 116 30% 

C60 malonate-γCD 
 

85, 102 105 ± 40 70.5% 

 
Columns 1 and 2 denote core structure and surface chemistry. Fullerene size 
characteristics were generated by Nanosight. Column 3 denotes hydrodynamic diameter 
size peaks; Column 4 denotes average hydrodynamic diameter; Column 5 denotes the 
percentage of particles with diameters under 110 nm. CNM indicates carbon 
nanomaterial.	  
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Table S3:  Nanomaterial Stability Characterization 

CNM 
Core  
 

Surface 
Chemistry 

ζ-potential (MQ 
water) (mV) 

ζ-potential (MHRW 
water) (mV) 

C60 

 
none -39.6 -32.8 

 
C60  
 

hydroxyl -54.0 -8.6 

C60  
 

βCD -42.2 -19.6 
 

C60 
 

amino -17.1 -24.6 
 

C60 
 

amino-γCD -9.3 -5.85 
 

C60 malonate -63.8 -16.4 
 

C60 malonate-γCD -47.9 -20.9 
 

SWCNT 

 
none 23.1 -19.0 

SWCNT 

 
COOH 
 

-61.1 -23.8 

SWCNT 

 

CONH2 
 

-52.0 -23.9 

SWCNT 
 

PEG 
 

-58.1 -23.4 

MWCNT 

 
none 23.0 -19.3 

Columns 1 and 2 denote core structure and surface chemistry; Column 3 denotes zeta (ζ) 
potential of nanomaterials in purified milli-Q (MQ) water; Column 4 denotes ζ-potential 
of nanomaterials in MHRW.  Note that the stability of suspensions in MHRW-only is not 
representative of nanomaterials in the exposure medium, as the presence of algae and 
alfalfa in the medium significantly improved suspension stability.  
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Table S4: Results summary for chronic exposures 
 
CNM 
Core  

Surface 
Chemistry 
 

Mortality Reproduction Adult Size 

C60 

 
none - 50 ppm 50 ppm 

C60  
 

hydroxyl - - - 

C60  
 

βCD - - - 

C60 
 

amino - - 5 ppm 

C60 
 

amino-γCD 1 ppm 1 ppm - 

C60 
 

malonate - 5 ppm (i) 5 ppm 

C60 
 

malonate-γCD 5 ppm - - 

SWCNT 
 

none - 10 ppm 10 ppm 

SWCNT 

 
COOH 
 

- 10 ppm 10 ppm 

SWCNT 

 

CONH2 
 

- 50 ppm 
 

50 ppm 

SWCNT 
 

PEG 
 

- 50 ppm 50 ppm  

MWCNT 

 
none 50 ppm 50 ppm 10 ppm 

 
Summary of chronic exposure results.  Only treatments that were statistically significant 
(p < 0.05) are noted.  The lowest concentrations that induced significant differences from 
controls are reported. Values indicate decreases in mortality, reproduction, and growth 
unless followed with (i), denoting an increase in the observed endpoint. Dashes indicate 
no significant difference from controls. 
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CHAPTER	  3	   	  
	  
Multi-generation impacts on Daphnia magna of carbon nanomaterials with differing core 

structures and functionalizations  
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ABSTRACT 

Several classes of contaminants have been shown to have multi-generational 

impacts once a parental generation has been exposed. Acute and chronic toxicity are 

described for several types of nanomaterials in the literature, however, no information is 

available on the impact of nanomaterials on future generations of organisms after the 

exposure is removed. In the present study, we examined the impacts of carbon 

nanomaterials (CNMs), including fullerenes (C60) and single and multi-walled carbon 

nanotubes (SWCNTs and MWCNTs) with neutral, positive, and negative functional 

groups to first (F1) and second (F2) generation daphnids after a parental exposure (F0). 

Data from the present study indicate that multi-generational toxicity is present with 

certain nanomaterial exposures and is highly dependent upon the surface chemistry of the 

nanomaterial. Many CNMs that showed toxicity to exposed F0 daphnids in previous 

experiments did not induce multi-generational toxicity. However, certain nanomaterials 

such as C60-malonate, SWCNT, SWCNT-CONH2, and MWCNT cause a significant 

decrease in either survival or reproduction in F1 daphnids, and SWCNT-CONH2 

decreased reproduction out to the F2 generation. Impacts of nanomaterials on F1 and F2 

size were small and lacked clear patterns, indicating that carbon nanomaterials have 

minimal multi-generational impacts to size. Industries should take into account how 

surface chemistry influences nanomaterial toxicity to future generations of organisms to 

create sustainable nanomaterials that do not harm freshwater ecosystems.  

 

Keywords:  Aquatic toxicology, Nanoecotoxicology, Nanomaterials, Reproductive 

toxicology, Multi-generational toxicology, Epigenetics 
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INTRODUCTION 

Engineered nanomaterials are emerging contaminants that have novel physical 

and chemical properties. They have already been widely commercialized in today’s 

marketplace despite the uncertainties regarding how they will interact with biological 

systems [1]. Most notably, carbon nanomaterials (CNMs) have been synthesized with a 

particularly wide array of shapes and functionalities for applications in medicine, 

clothing, cosmetics, electronics, and polymer composites. As the production and 

application of CNMs increases, the likelihood that CNMs will end up in the environment 

and in aquatic systems also increases [2].   

Multi-generational impacts of chemicals have been demonstrated for several other 

classes of compounds, including endocrine disrupting chemicals, PFOs and PFOAs, and 

heavy metals [3-5]. These impacts include elevated mortality and decreased size and 

reproduction in second and third generation offspring of various organisms including rats, 

Daphnia magna, and Japanese medaka. A continuous exposure of multiple generations of 

organisms to a chemical may cause physiological changes to support adaptation or 

acclimatization [6-8]. In addition, a single exposure of parent organisms to a chemical 

can result in exposure of offspring to the chemical during sensitive prenatal stages of 

development, which can lead to significant adverse outcomes later in life, and these 

effects can show up a generation or more after the exposure is removed [9]. 

There are growing data for acute and chronic toxicity for a variety of 

nanomaterials [10]; however, no data is available on the multi-generational impacts of 

nanomaterials to whole organisms after the exposure has been removed. In vitro assays 

have demonstrated that nanomaterials can induce changes to the epigenome (DNA 
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methylation, histone modifications, and gene silencing by non-coding RNAs) [11, 12], 

suggesting the possibility of impacts to future generations.	  If the effects of nanomaterial 

exposure are transferred to future generations of organisms, there could be long-term 

ecological consequences. Therefore an understanding of how nanomaterial exposure will 

affect populations of organisms after the nanomaterial exposure has been removed is 

essential to increase our knowledge about the long-term ecological impacts of 

nanomaterials, and it is relevant for any scenarios where remediation is necessary [13]. 

The current study investigates the multi-generational response of future 

generations of Daphnia magna from an F0 exposure to multiple types of CNMs that differ 

in core structure and surface functionalization. Daphnia are a model aquatic invertebrate 

for toxicity assays because of their Holarctic distribution in freshwater systems, 

parthenogenetic reproductive strategy, and the quantity of data regarding their life history 

and responses to environmental stressors. They are ideal for multi-generational studies as 

they are genetic clones, allowing the potential for epigenomic impacts to be measured. In 

our previous study, we demonstrated that nanoparticle structure and functionalization 

influence particle toxicity to first-generation exposed Daphnia (F0) [14]. In the present 

study, the consequences of F0 exposures to future generations of daphnids (F1 and F2) are 

evaluated, using impacts on survival, reproduction, and adult size as adverse outcome 

endpoints.   

 

MATERIALS AND METHODS 

Nanomaterial preparation and characterization  
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Six carbon nanomaterials were synthesized by J. Chen at UWM. These particles 

include C60-βCD (derivative 1), C60-amino (derivative 2), C60-amino-γCD (derivative 3), 

C60-malonic acid (derivative 4), C60-malonate (derivative 5), and C60-malonate-γCD 

(derivative 6) (Figure 1).  Beta and gamma cyclodextrins (βCD and γCD) were ground 

with fullerenes in an agate mortar to yield derivatives 1, 3, and 6.  Particles were 

suspended in de-ionized water by 1 h bath sonication in the absence of solvents and 

surfactants, as this has been shown to change how the particles interact with organisms 

[15]. The smallest average diameter was observed with C60-malonate-γCD particles (105 

nm), followed by C60-βCD (107 nm), C60-amino (142 nm), C60-amino-γCD (152 nm), 

C60-amino-γCD (175 nm).  The most stable of these particle types were C60-malonate and 

C60-malonate-γCD, with more negative zeta (ζ) potential values (-63.8 mV and -47.7 

mV), followed by C60-βCD (-42.2 mV), C60-amino (-17.07 mV), and C60-amino-γCD (-

9.26 mV). Analysis by ICPMS indicated low levels of iron and copper in the suspensions 

(Table S1). 

An additional 7 particle types were obtained as powders from manufacturers and 

suspended in milli-Q water. No additional solvents or surfactants were used to suspend 

the particles. These include fullerenes (C60; Alfa Aesar), hydroxylated fullerenes (C60-

OH; MER Corp.), single-walled carbon nanotubes (SWCNTs; Carbon Solutions), 

carboxylic acid functionalized SWCNTs (SWCNT-CO2H; Carbon Solutions), carboxyl-

amide functionalized SWCNTs (SWCNT-CONH2; Carbon Solutions), polyethylene 

glycol functionalized SWCNTs (SWCNT-PEG; Carbon Solutions), and multi-walled 

carbon nanotubes (MWCNTs; NanoAmor). The average diameters for C60 and C60-OH 

were 141 nm and 144 nm, respectively. Average diameters for nanotubes ranged from 
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800 nm to over 2 microns; however, due to the high aspect ratio of the nanotubes, the size 

of the aggregates is not uniform, and some aggregate sizes are smaller and larger than 

these reported average diameters. Functionalized nanotubes (SWCNT-COOH, SWCNT-

PEG, and SWCNT-CONH2) were the most stable in suspension with milli-Q water (ζ 

potential of -61 mV, -58.07 mV, and -52.04 mV), followed by fullerenes (C60-OH and 

C60 ζ potentials of -54.02 mV and -39.6 mV), and unfunctionalized nanotubes (SWCNT 

and MWCNT ζ potentials of 23.07 mV and 22.98 mV). Analysis by ICPMS indicated the 

presence of 9.49 ppb and 34.6 ppb iron in C60 and C60-OH suspensions, and also the 

presence of 0.1 ppb strontium in C60 suspensions and 6.88 ppb copper in C60-OH 

suspensions (Table S1). Nickel was present in all carbon nanotube suspensions. The 

highest nickel concentration was found in SWCNT (368 ppb), followed by SWCNT-

COOH (212 ppb), MWNCT (151 ppb), SWCNT-CONH2 (60 ppb), and SWCNT-PEG 

(60 ppb) (Table S2). A sample of the catalyst that was used to synthesize the carbon 

nanotubes was obtained directly from the manufacturer (Carbon Solutions, Inc. 

Riverside, CA), and acute and chronic toxicity experiments with this catalyst indicated 

that it does not influence daphnid mortality, reproduction, and adult size at the 

concentrations in treatments.  

 

Daphnia cultures  

Daphnia magna were obtained from cultures in the Klaper laboratory at the 

UWM School of Freshwater Sciences and maintained in a 16:8 light/dark cycle at a 

temperature of 20 °C in moderately hard reconstituted water (MHRW) [16]. Cultures 

were fed a combination of freshwater algae (Selenastrum capricornutum) and alfalfa 
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(Medicago sativa). Adult females were chosen from stock cultures for breeding purposes 

and maintained in 500 mL beakers at constant population of 1 Daphnia/80 mL MHRW.  

 

Multi-generation assays 

 The F0 generation daphnids were exposed to 0, 10 and 50 ppm concentrations of 

carbon nanomaterials obtained from commercial sources and 0, 1, and 5 ppm for those 

nanomaterials that were synthesized by J. Chen due to limitations in quantity as well as 

higher toxicity found with a few of these nanomaterials [14]. The maximum 

concentrations chosen reflected exposure levels that were determined to be sub-lethal, 

based on a series of LC50 values calculated from acute exposures of Daphnia to 

nanomaterials in previous work in our laboratory [14, 17]. Additional controls with βCD 

and γCD were conducted to evaluate the potential toxicity of these surface attachments.  

Five F1 generation female daphnids were chosen from second or third broods of F0 

daphnids. F1 daphnids were born in the exposure medium, but were placed in control 

MHRW within 24 h. Five F2 generation female daphnids were then chosen from second 

or third broods of F1 daphnids. F1 and F2 generations of daphnids were raised in control 

medium (MHRW only) for 21 d with static renewal where medium was replenished 3 

times per week.  	  

Mortality and reproductive output were measured during medium changes.  

Daphnid size was measured as the length of the daphnid from the top of the head to the 

base of the apical spine at day 21. Experiments met the mortality and reproduction 

requirements of controls outlined by the OECD Guidelines for the Testing of Chemicals 

[18]. Changes in population density and food availability were eliminated with removal 
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of proportionate volumes of medium and food from the exposures as mortality occurred. 

Daphnids were kept at a concentration of 1 daphnid per 20 mL medium with a food 

concentration of 400,000 algal cells/mL of medium. Total reproductive output was 

calculated for the number of surviving individuals at the time of measurement and then 

reported as the average number of neonates produced per surviving individual. 

 

Statistical analysis 

Effects of nanomaterials to daphnid mortality, reproduction, and adult size were 

compared to controls by t-test or by non-parametric Mann-Whitney U tests. The effect of 

nanomaterials to daphnid mortality, reproduction, and size was compared across 

treatments within each generation. Values were determined to be significant at p < 0.05.   

 

RESULTS 

Multi-gen impact of CNMs on mortality 

 Multi-generational effects on survival were observed for some carbon 

nanomaterial treatments in F1 daphnid generations (Figure 2). Of the unfunctionalized 

nanoparticle types, MWCNTs decreased the survival rate of F1 daphnids compared to 

controls (77.2% survival, U=27, p < 0.05) (Figure 2A). Although unfunctionalized C60 

did not significantly impact survival, some types of surface chemistries were found to 

increase the toxicity of C60 to Daphnia. This includes 10 ppm C60-βCD (84% survival, 

U=18, p < 0.05) and 5 ppm C60-malonate (64% survival, U=18, p  < 0.05) (Figure 2B). 

None of these treatments decreased survival of F0 daphnids in our previous experiment, 
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however; MWCNTs at the higher 50 ppm concentration were found to decrease F0 

survival [14]. 

 

Multi-gen impacts of CNMs on reproduction 

 Select carbon nanomaterials did have an impact on reproduction up to two 

generations after parental exposure. Carbon nanomaterial core structure was an important 

parameter that influenced multi-generational reproduction in daphnids. Of the 

unfunctionalized carbon nanomaterials, only 50 ppm SWCNTs significantly decreased F1 

daphnid reproduction compared to controls (decrease of 23%, t = 2.767, p < 0.05) (Figure 

3A), but this effect was not observed in the F2 generation. At a concentration of 50 ppm, 

C60 reduced reproduction by 17% in F2 daphnids, (t = -4.137, p < 0.05) (Figure 3B).  

Finally, 10 and 50 ppm MWCNTs reduced reproduction in the F1 and F2 generation, but 

this was only significant for 10 ppm exposures in the F2 (decrease of 18%, t = -2.192, p < 

0.05) (Figure 3A and 3B). The addition of COOH or PEG surface chemistry to SWCNT 

did not change reproduction compared to controls in any generation; however, SWCNT-

CONH2 significantly reduced reproduction in both F1 (decrease of 17%, t = -6.351, p < 

0.05) and F2 daphnids (decrease of 17%, t = -3.956, p < 0.05) (Figure 4A and 4B), 

indicating that this surface chemistry increases the toxicity of SWCNTs to future 

generations of daphnids.  

Some functionalized fullerenes had significant impacts to F1 and F2 reproduction.  

While 10 ppm C60 had no significant impacts to multi-generational reproduction, 

reproduction in the F1 was significantly decreased by 5 ppm C60-malonate (decrease of 

9%, t = 2.361, p < 0.05) and increased by 10 ppm C60-βCD (increase of 22%, t = 4.863, p 
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< 0.05) (Figure 5A).  However, these effects were not found in the F2 generation (Figure 

5B).  In addition, impacts of 10 ppm C60-βCD on increased reproduction was not 

significantly different from 10 ppm C60, indicating that the attachment of βCD to C60 

doesn’t change the impacts of unfunctionalized fullerenes to F1 reproduction. Finally, 50 

ppm C60-OH decreased F1 reproduction by 12% (t = -3.608, p < 0.05) and increased F2 

reproduction by 10% (t = 2.336, p < 0.05). 

 

Multi-gen impact of CNMs on adult size 

 Carbon nanomaterials also had a marginal multi-generational impact on daphnid 

size, and this was dependent on core structure and functionalization. At 10 and 50 ppm, 

C60 significantly decreased F1 adult size by 5.5% and 4% (t = -4.083, p < 0.05 and t = 

3.351, p < 0.05). For functionalized fullerenes, significant decreases in F1 size were 

observed for 10 ppm C60-OH, 5 ppm C60-amino, and 5 ppm C60-malonate (decrease of 

4%, 5.8%, and 7%) (t = 3.036, p < 0.05; t = -4.863, p < 0.05; t = -6.687, p < 0.05) (Figure 

6A); however, none of these treatments were significantly different from controls in the 

F2 generation (Figure 6B). In addition, non of these results are significantly different 

from F1 daphnids from C60 exposures, indicating that functionalization with these surface 

chemistries does not change the toxicity of unfunctionalized fullerenes to F1 daphnid size. 

In addition, SWCNT-CONH2 also significantly decreased F1 adult size at a concentration 

of 50 ppm compared to controls (decrease of 5%, t = -6.439, p < 0.05). Increases in F1 

size were observed with 10 ppm MWCNTs (increase of 2.8%, t = 2.374, p < 0.05) and 10 

ppm SWCNT-CONH2 (increase of 6%, U=3, p < 0.05). In the F2 generation, a decrease 

in adult size was observed for 10 ppm SWCNT-COOH (decrease of 4.9%, t = -2.876, p < 
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0.05) and increases in size were observed for 50 ppm C60 (increase of 1.7%, t = 2.003, p 

< 0.05), 50 ppm MWCNT (increase of 5%, t = 3.711, p < 0.05), and 10 ppm SWCNT-

PEG (increase of 6.5%, t = 4.401, p < 0.05). 

 

DISCUSSION 

Carbon nanomaterials exert a multi-generational effect on Daphnia survival, 

reproduction, and growth, as exposure of an original population of daphnids (F0) to 

specific nanomaterials had a consequence for the embryo (F1), or germ-line (F2) to 

nanomaterials. The nature of the effect is dependent upon the core nanomaterial structure 

and surface functionalization; however, the reason for the observed change in toxicity 

with specific surface chemistries is unclear. Others have proposed surface charge as 

playing a large role in toxicity [19, 20], but our data show toxicity associated with 

positive, negative, and neutral particle types. Similarly, nanomaterials represented here 

encompass a wide range of stabilities (zeta potentials ranging from -60 mV to +23 mV) 

and sizes (approximate diameters of 150 nm for fullerene particle types and diameters of 

several microns for carbon nanotubes) with no clear correlation between aggregation 

state and multigenerational impacts. It is possible that the interaction of the specific 

surface chemistry of the nanomaterials that reduced multi-generational reproduction in 

Daphnia led to specific interactions within the daphnid that need to be explored further, 

such as chemical specific interactions with receptors in the organism [21], environmental 

or protein coronas that dictate interactions with the organism [22], or differences in 

genomic impacts of nanomaterials across generations. Results in the present study 

emphasize the importance of testing for multi-generational impacts of nanomaterials on 
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sub-lethal endpoints, as the results seen here would not have been evident from single 

generation assays.   

 

Impacts of CNMs on F1 and F2 Reproduction 

 Carbon nanomaterials impacted reproduction across generations, but this impact 

was specific to the type of nanomaterial to which the original organism was exposed. F1 

reproduction was decreased by several treatments including 50 ppm SWCNT, SWCNT-

CONH2, and C60-OH, and 5 ppm C60-malonate; and F2 reproduction was decreased by 50 

ppm C60 and SWCNT-CONH2 treatments. F1 daphnids are born in the nanomaterial 

medium and receive an initial exposure to the nanomaterials as neonates, and Daphnia 

neonates are already pregnant when they are born so it is possible that F2 daphnids also 

receive an initial exposure to nanomaterials during sensitive developmental stages.  

 Multi-generational nanomaterial toxicity could be mechanical in nature.  The 

daphnid feeding current has been shown to be diverted to the brood chamber to 

oxygenate the neonates as they develop [23], and if nanomaterials are present in this 

feeding current they could disrupt the flow of oxygen and other nutrients to the embryos. 

The transfer of nanomaterials across the epithelial lining of the parent daphnid digestive 

tract to lipid storage compartments could also impact F1 daphnids. Lipid storage 

compartments are used for sustenance during periods of low food resources and for the 

synthesis of vitellogenin [24], which is an essential protein required for embryogenesis in 

Daphnia. Many nanomaterials have lipophilic properties, and it is possible for 

nanomaterials to accumulate in lipid storage compartments of Daphnia as they are 

ingested from feeding with subsequent impacts to vitellogenin synthesis and activity. 
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Some carbon nanomaterials have already been shown to inhibit protein activity [25] and 

disrupt membrane transport activities in the cell [26], and these actions could impede 

normal daphnid reproduction and growth.   

Multi-generational reproductive toxicity could also result from changes in gene 

expression [27]. Nanomaterials have been shown to generate oxidative stress in 

organisms [28, 29], increase DNA damage [30, 31], and induce immune system activity 

[32]. Molecular models also indicate the potential for carbon nanomaterials to bind to 

DNA and alter DNA conformations [33]. Previous work in our laboratory shows 

differential expression of oxidative stress biomarkers glutathione-s-transferase and 

catalase in daphnids exposed to carbon nanomaterials [17]. Other types of nanomaterials 

have also been shown to induce genomic changes in Daphnia, as zinc oxide nanoparticles 

induced differential expression of multicystatic, ferretin, and C1q genes [34]. Changes in 

gene expression have also been found in C. elegans after exposure to silver nanoparticles 

regarding the expression of SOD and Daf12 genes [35]. 

 Interestingly, reproduction was increased in F1 daphnids from 10 ppm C60-βCD 

treatments. It is possible for cyclodextrins to be utilized for additional nutritional value 

with a consequence of increased reproduction in F1 daphnids, as daphnids have been 

shown to utilize lipids that are non-covalently bound to SWCNTs for nutritional value in 

conditions of starvation [36]. However, reproduction in F1 Daphnia was not increased by 

βCD treatments alone.  In addition, reproduction was not increased in C60 treatments that 

were non-covalently bound to γCD, as C60-amino-γCD and C60-malonate-γCD were too 

toxic to F0 daphnids to conduct multi-generational trials at concentrations higher than 1 

ppm. F1 and F2 daphnids from SWCNT-PEG treatments also exhibited trends for 
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increased size and reproduction, and it is possible for daphnids to use PEG attachments 

for nutritional value in ways similar to the cyclodextrins discussed above.  

 

Impacts of CNMs on F1 and F2 Size 

Some carbon nanomaterials induced changes to the size of adult Daphnia. 

However, while these changes were statistically significant, they were relatively small in 

nature, with potentially negligible biological implications to the overall fitness of the 

individual or population. This is in contrast to the same nanomaterial exposures causing a 

decrease in adult size in F0 daphnids of more than 10% for many of these nanomaterials 

in our previous study [14]. There was a slight decrease in size of F1 daphnids from 10 and 

50 ppm C60 exposures, however; F2 daphnids exhibited sizes that were comparable to 

controls, indicating that daphnid populations can recover from this effect. Increased size 

was observed in F1 and F2 daphnids for some nanomaterial types in this experiment, and 

this could support the idea of a life-strategy shift to produce fewer neonates (reduced 

number of offspring) of higher quality (larger neonate size) in times of environmental 

stress [37]. Overall, no nanomaterial treatments impacted size by more than 6.5%, and 

these results suggest that carbon nanomaterials do not have strong multi-generational 

impacts to daphnid size.  

 

Potential for Trans-generational Toxicity 

The multi-generational toxicity of carbon nanomaterials investigated in this 

experiment could also be explained by toxic impacts to the daphnid epigenome, 

suggesting the potential for trans-generational toxicity of nanomaterials. Trans-
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generational toxicity is defined as an exposure of a previous generation of organisms to a 

chemical that induces a change to the germ-line that is propagated to future generations 

of organisms that never received a direct exposure to the chemical. Epigenetic impacts 

from DNA methylation and histone modifications have already been shown with other 

types of toxicants [38].  Changes in the epigenome are heritable and can appear in future 

generations of organisms even after the exposure is removed [39]. Many of the effects to 

Daphnia that were observed in the nanomaterial treatments across generations 

disappeared by the F2 generation, indicating that most of the treatments do not likely have 

an epigenomic effect on daphnids. However, exposure of daphnids to 50 ppm SWCNT-

CONH2 resulted in changes to reproduction that were consistently decreased across F0, 

F1, and F2 generations, and it is possible that this exposure could have trans-generational 

impacts to Daphnia. If exposure of Daphnia to SWCNT-CONH2 resulted in epigenetic 

changes to germ line cells, the effect would be observed in future generations, even after 

the exposure was removed. Future work will include an evaluation of genetic and 

epigenetic marks (DNA methylation) of F3 and F4 generations to observe whether any 

patterns arise regarding genetic or epigenetic expression and reduced reproduction for 

this particle type. 

 

Impacts of CNMs on ecological viability of Daphnia 

Daphnids play an essential role in aquatic food webs [40], and a sudden decrease 

in daphnid population viability over several generations could be detrimental to the 

balance of an aquatic ecosystem. The results seen in this experiment describe survival 

and reproductive impacts of some nanomaterial types up to 20% that persisted past the 
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initial F0 exposure, and this could have important ecological consequences for population 

dynamics in natural environments. The present study calls for more detailed information 

on the types of surface chemistries that may be appropriate for creating nanomaterials 

that have lower toxicity across generations and are therefore more sustainable. Acquiring 

toxicity information about how a nanomaterial can influence sensitive early 

developmental stages of an organism and future generations of organisms is an essential 

component to understanding the potential ecological impacts of nanomaterials on 

ecosystems. 
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Biotechnology	  Information	  (US).	  
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FIGURES 
 

 
 
Figure 1   Fullerene structures synthesized at UWM. Derivative 1: C60-βCD. 

Derivative 2: C60-amino.  Derivative 3: C60-amino-γCD. Derivative 4: C60-malonic acid, 

which was a precursor used to synthesize Derivatives 5 and 6. Derivative 4 was not used 

for toxicity investigations. Derivative 5: C60-malonate. Derivative 6: C60-malonate-γCD. 

βCD indicates beta cyclodextrin and γCD indicates gamma cyclodextrin.  
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Figure 2   Multi-generational impacts of carbon nanomaterials on daphnid survival. 

Survival of daphnids after exposure to A) unfunctionalized carbon nanomaterials and B) 

functionalized fullerenes. Error bars indicate standard error.  Values determined to be 

significant by Mann Whitney U test with p < 0.05.  
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Figure 3   Reproduction impacts of unfunctionalized carbon nanomaterials to a) F1 

and b) F2 generation daphnids.  Error bars indicate standard error.  Values determined to 

be significant by t test with p < 0.05. SWCNT indicates single-walled carbon nanotube 

and MWCNT indicates multi-walled carbon nanotube. 
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Figure 4   Reproduction impacts of functionalized single-walled carbon nanotubes 

(SWCNT) to A) F1 and B) F2 generation daphnids. Error bars indicate standard error.  

Values determined to be significant by t test with p < 0.05. 
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Figure 5   Reproduction impacts of functionalized fullerenes to A) F1 and B) F2 

generation daphnids. Error bars indicate standard error.  Values determined to be 

significant by t test with p < 0.05. 
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Figure 6   Size impacts of functionalized fullerenes to A) F1 and B) F2 generation 

daphnids.  Error bars indicate standard error.  Values determined to be significant by t 

test with p < 0.05. 
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CHAPTER 3 SUPPLEMENTARY MATERIAL 
 
 
Multi-generation impacts on Daphnia magna of carbon nanomaterials with differing core 

structures and functionalizations  
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CHAPTER 4 

Core structure and surface functionalization of carbon nanomaterials impact gene 

expression in the freshwater invertebrate Daphnia magna in chronic exposures and in a 

multi-generational study 
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ABSTRACT 

Although the toxicity of carbon nanomaterials on daphnids has been demonstrated, the 

mechanisms of toxicity are still unclear, and the impact of core structure and surface 

chemistry on the mechanism of toxicity is also unclear. Some studies indicate that 

nanomaterials are toxic because of oxidative stress, but it is likely that nanomaterials 

induce toxicity by other mechanisms, as well. In this project, we evaluated how adverse 

outcomes from carbon nanomaterials are related to the expression of key genes associated 

with oxidative stress (glutathione s-transferase; GST), reproduction (vitellogenin fused 

with superoxide dismutase; VTG-SOD), and energy metabolism (NADH 

dehydrogenase). We investigated multi-generational changes in the expression of these 

genes to F1 and F2 daphnids. Results show decreased expression of GST in daphnids after 

exposure to SWCNT and SWCNT-CONH2.  Results also demonstrate increases in GST 

and VTG-SOD transcripts and decreases in NADH dehydrogenase transcripts associated 

with daphnid exposure to fullerene-gamma cyclodextrin complexes.  Only carboxy-amide 

functionalized single-walled carbon nanotubes exhibited changes in GST in future 

generations of daphnids. Daphnia are emerging as a promising ecotoxicogenomic model 

organism, and knowledge of adverse outcome pathways in exposed and future generation 

daphnids will improve the predictive power of ecotoxicology. 
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INTRODUCTION 

Carbon nanomaterials (CNMs) are an important component in several industries 

including electronics, medicine, biosensors, and synthetic materials. The successful 

application of CNMs to various industries requires that they are dispersible and 

biocompatible, and as a result carbon nanomaterials exist in a variety of shapes with 

many different surface chemistries. The increasing production rate of carbon 

nanomaterials elevates exposure potential of these materials to people and organisms.  In 

addition, the toxicity of these materials has been questioned, and the wide array of shapes 

and surface functionalities of carbon nanomaterials complicates testing for their potential 

toxicity to biological systems. Several CNMs have been shown to induce toxicity to 

aquatic and terrestrial organisms [1-4].  In addition, much of the current literature focuses 

on acute, high-dose studies that fail to capture the more subtle impacts of nanomaterial 

exposure that are likely to occur in chronic exposure scenarios and multi-generational 

scenarios where the initial exposure is removed, and where the mechanism of toxicity of 

nanomaterials is likely to change over longer exposure periods.   

Much of the literature indicates that a major cause of CNM toxicity is oxidative 

stress.  CNMs have been shown to generate oxygen radicals in the presence of UV, which 

can then induce toxicity to organisms and cells [5]. The organism’s immune system can 

also generate reactive oxygen species (ROS) as a natural biological response to get rid of 

invading pathogens, and studies show that the activation of inflammatory biomarkers is 

paralleled by activation of biomarkers of oxidative stress and that there are triggered in 

response to exposure to nanomaterials in aquatic species as well as in other vertebrates 

[6-8]. However, a majority of these studies investigate the acute, high-dose exposure of 
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nanomaterials in vitro, while it is more likely that organisms in the environment will be 

chronically exposed to nanomaterials at lower concentrations that are not acutely toxic.  

This is problematic, as the induction of oxidative stress can be part of a more global 

stress response in acute and high-dose scenarios, and oxidative stress can often be an 

early response of an organism to environmental stress [9]. It is necessary to investigate 

nanomaterial exposure in chronic scenarios and also in multi-generational scenarios so 

that more subtle impacts of nanomaterials can be identified.  

In the present study, we used Daphnia magna to investigate changes in gene 

expression related to oxidative stress, reproduction, and energy metabolism after a 

chronic and multi-generational exposure to CNMs. In our previous work, we 

demonstrated differential toxicity associated with nanomaterials relative to their core 

structure and functionalization.  We found that carbon nanotubes were more consistently 

toxic to daphnids than were fullerenes, and we found that fullerenes that are 

noncovalently bound to gamma cyclodextrins were more toxic to daphnids than any other 

investigated particle type.  We also found differential toxicity associated with some 

nanomaterial types in a multi-generational context.  Most notably, single-walled carbon 

nanotubes functionalized with carboxy-amides reduced daphnid reproduction in both the 

F1 and F2 generations. In the current study, we investigated gene expression of the 

daphnids used in our previous work.  This will help us better understand nanomaterial 

toxicity in a more detailed, chronic, and multi-generational framework.   

Using a targeted Q-PCR approach, we investigated changes in the expression of 

glutathione-s-transferase (GST), vitellogenin fused with superoxide dismutase (SOD), 

and NADH dehydrogenase (NADH) in daphnids chronically exposed to various types of 
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carbon nanomaterials, and also in future generations of daphnids after the initial 

nanomaterial exposure was removed. GST is involved in the detoxification process, and it 

has a role in the elimination of hydrogen peroxide radicals [4]. Vitellogenin is an 

essential yolk protein with an important role in embryo development, and VTG-SOD has 

been shown to possess a crucial function in the transition of reproduction to diapause in 

crustaceans [10]. NADH dehydrogenase is important for glycolysis and energy 

metabolism via the electron transport chain. Hyperactivation of the electron transport 

chain can also result in the formation of radical species, and changes in the expression of 

NADH could have implications for oxidative stress as well [11].  

The goal of this research was to examine gene expression patterns in low-level 

chronic exposures to nanomaterials to clarify the role of oxidative stress in chronic 

exposures, and also to elucidate other mechanisms that are essential for a more 

comprehensive understanding of nanomaterial toxicity. We investigated how exposures 

to the F0 generation impacted gene expression in the F1 and F2 generations, and we found 

that certain nanomaterials with select surface chemistries caused an impact on 

reproduction and growth in subsequent generations [3].   The objective of this research 

was to identify the underlying mechanisms of carbon nanomaterial toxicity by 

investigating the impacts of various types of CNMs on Daphnia magna gene expression 

over a chronic and multi-generational exposure using Q-PCR. 

 

METHODS 

Daphnia magna cultures and toxicity assays 
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Daphnia magna were obtained from Aquatic Ecosystems (Apopka, FL) and were 

cultured in the Klaper laboratory in moderately hard, reconstituted water [12] at 20 °C in 

a 16:8 hour light/dark cycle. Neonates less than 24 hours old were used for 21-day 

chronic toxicity assays.  Organisms were placed in 100 mL of control MHRW or 

nanoparticle exposure medium, and medium was changed three times per week.  

Reproduction and mortality were evaluated during medium changes. At the end of the 21-

day exposure, growth was measured and organisms were flash frozen in liquid nitrogen 

for RNA extraction. For multi-generational trials, female neonates were sampled from 

second or third broods of exposed parents (F0) and transferred to control MHRW. Control 

medium was replenished three times per week and mortality and reproduction were 

evaluated during medium changes.  Growth of the organisms in each generation was 

evaluated at the end of the 21-day trial. This was repeated for the F1 and F2 generations. 

 

Nanomaterials and characterization 

The toxicity of a total of twelve types of carbon nanomaterials with differing core and 

surface chemistries were investigated in this experiment.  Five fullerene derivatives were 

synthesized at the Chen Laboratory in the Department of Chemistry and Biochemistry at 

UWM. An amino substituted fullerene derivative (C60-amino) was synthesized according 

to the literature [13-16] and suspended in one liter of deionized water with one hour of 

sonication. A disodium malonate derivative of fullerene (C60-malonate) was synthesized 

by dissolving a malonic acid-derived fullerene in 0.01 M NaOH and then diluting the 

resulting mixture to one liter with deionized water using one hour of sonication. Grinding 

fullerene nanopowders with beta cyclodextrins (βCD) or gamma cyclodextrins (γCD) in 



www.manaraa.com

	  

	  

88	  

an agate mortar for one hour created three additional types of fullerene derivatives that 

were investigated for this experiment. This includes a supramolecular complex of C60 

with BCD (C60-βCD), C60-amino with γCD (C60-amino-γCD), and C60-malonate with 

γCD (C60-malonate-γCD). For more information about the synthesis of these 

nanomaterials please refer to our previous work [3].  

 An additional seven types of purified carbon nanomaterials were purchased from 

a manufacturer and suspended in water upon arrival. This includes unfunctionalized 

fullerenes (C60) (Alfa Aesar), hydroxylated fullerenes (C60-OH) (MER Corporation), 

unfunctionalized single-walled carbon nanotubes (SWCNT) (Carbon Solutions Inc.), 

carboxylated SWCNTs (SWCNT-COOH) (Carbon Solutions Inc.), carboxy-amide 

functionalized SWCNTs (SWCNT-CONH2), SWCNTs functionalized with polyethylene 

glycol (SWCNT-PEG) (Carbon Solutions Inc.), and unfunctionalized multi-walled 

carbon nanotubes (MWCNTs) (NanoAmor, Inc.).   

 All of these carbon nanomaterials were characterized by transmission electron 

microscopy (TEM) for size and surface structure, dynamic light scattering with a 

Malvern Zetasizer (Worcestireshire, UK) for aggregate size distribution and zeta 

potential, particle tracking with a Nanosight (Wiltshire, UK) to determine aggregate size 

distributions, and ICPMS with an acid digestion preparation by Pace Analytical (St. 

Rose, LA) to determine catalyst residue in the suspensions.  

 

RNA extraction, cDNA synthesis, primer design, and Q-PCR 

After chronic exposures, daphnids were flash frozen in liquid nitrogen and stored at -80 

°C for RNA extraction with a Direct-zol RNA isolation kit (Zymo Research, Irvine, CA).  
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RNA concentration was measured by Nanodrop and quality analyzed using a Bioanalyzer 

for degradation. To analyze for differences in gene expression, 500 ng RNA per sample 

was DNAse treated and reverse transcribed to cDNA with Oligo(dT) 15 primers and 

Superscript III reverse transcriptase (Life Technologies, Grand Island, NY). Primers for 

Q-PCR (GST, VTG-SOD, and NADH dehydrogenase) were derived from a genetic 

backbone that was produced by the Klaper laboratory using from 454 sequencing of 

Daphnia magna RNA from a previous experiment (Table 1). Actin was also derived from 

the genetic backbone, and the actin contig that was used for primer design did not show 

any changes in expression in response to carbon nanomaterial treatment. Contigs that 

were used for primer design were blasted against the non-redundant protein database by 

BLASTX to ensure high identity and query cover with the genes from the database. Q-

PCR was conducted using an iTaq SYBR green master mix (Bio-Rad, Hercules, CA) 

with a primer melting temperature of 62 °C on  STEP-ONE Q-PCR real time PCR system 

and software (Life Technologies, Grand Island, NY). Only daphnids from 50 ppm C60 

and 50 ppm SWCNT-CONH2 treatments were evaluated for multi-generational changes 

in gene expression, as these treatments resulted in consistent decreases to F0, F1, and F2 

reproduction in our previous work [17].  An investigation of multi-generational impacts 

of other treatments will be included in future work.  

 

Statistical Analysis 

Cycle threshold (CT) values for GST, VTG-SOD, and NADH dehydrogenase were 

normalized to Actin (delta CT).  The delta CT value was used for statistical analysis by 

paired samples t-tests where significance was determined at p < 0.05.  Data are reported 
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in the form of fold change, and fold change was calculated by the Livak (delta delta CT) 

method [18].  

 

RESULTS 

Nanomaterial Characterization 

The smallest average diameter was observed with C60-malonate-γCD particles 

(105 nm), followed by C60-βCD (107 nm), C60-amino (142 nm), C60-amino-γCD (152 

nm), and C60-amino-γCD (175 nm). Analysis by ICPMS indicated low levels of iron and 

copper in the suspensions. The average diameters for C60 and C60-OH were 141 nm and 

144 nm, respectively. Average diameters for nanotubes ranged from 800 nm to over 2 

microns; however, due to the high aspect ratio of the nanotubes, the size of the aggregates 

was not uniform, and some aggregate sizes were smaller or larger than these reported 

average diameters.  

The most negative zeta (z) potentials were found in C60-malonate and SWCNT-

COOH suspensions (-63.8 mV and -61.0 mV).  These were followed by SWCNT-PEG (-

58.07 mV), C60-OH (-54.02), SWCNT-CONH2 (-52.04), C60-malonate-γCD (-47.7 

mV), unfunctionalized C60 (-39.6 mV), C60-amino (-17.07 mV), C60-amino-γCD (-9.26 

mV), MWCNT (22.98 mV), and SWCNT (23.07 mV).  Suspensions of MWCNT and 

SWCNT are highly neutral in nature due to the lack of surface functionalization, and it is 

likely that the positive zeta potentials here reflect positive nickel catalyst residue in the 

suspensions.  

Analysis by ICPMS indicated the presence of 9.49 ppb and 34.6 ppb iron in C60 

and C60-OH suspensions, and also the presence of 0.1 ppb strontium in C60 suspensions 
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and 6.88 ppb copper in C60-OH suspensions. Nickel was present in all carbon nanotube 

suspensions. The highest nickel concentration was found in SWCNT (368 ppb), followed 

by SWCNT-COOH (212 ppb), MWNCT (151 ppb), SWCNT-CONH2 (60 ppb), and 

SWCNT-PEG (60 ppb). A sample of the catalyst that was used to synthesize the carbon 

nanotubes was obtained directly from the manufacturer (Carbon Solutions, Inc. 

Riverside, CA), and acute and chronic toxicity experiments with this catalyst indicated 

that it does not influence daphnid mortality, reproduction, and adult size at the 

concentrations in treatments. For a more complete description of nanomaterial 

characteristics, please refer to our previous research [3, 17]. 

 

GST expression 

Levels of GST were increased or decreased in response to treatment with various 

types of CNMs. At a concentration of 50 ppm, SWCNTs decreased GST expression by 

7.91 fold (df = 5, p < 0.05) and SWCNT-CONH2 decreased GST expression by 3.52 fold 

(df = 15, p < 0.05) (Figure 1a). Although unfunctionalized fullerenes did not change the 

expression levels of GST at any of the tested concentrations, fullerenes that were 

functionalized with γCD increased GST expression in daphnids. At a concentration of 1 

ppm, C60-malonate-γCD increased GST expression by 3.23 fold (df = 3, p <0.05) (Figure 

1b).  GST expression was also increased 1.74 fold by 1 ppm C60-amino-γCD, but this 

was not found to be significant.  

Only 50 ppm SWCNT-CONH2 was found to have a multi-generational impact on 

GST expression.  This particle type decreased GST expression in the F2 generation by 
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3.34 fold (df = 3, p < 0.05). None of the other treatments exerted a multi-generational 

change in expression of GST in daphnids.  

 

VTG-SOD expression 

 VTG-SOD expression was significantly increased by two treatments in F0 

generation daphnids. At a concentration of 1 ppm, C60-amino-γCD increased VTG-SOD 

expression by 39 fold (df = 5, p < 0.05) and C60-malonate-γCD increased VTG-SOD 

expression by 30 fold (df = 3, p < 0.05) (Figure 2).  None of the other treatments altered 

VTG-SOD expression, and expression of VTG-SOD was not changed in F1 or F2 

generation daphnids.  

 

NADH dehydrogenase expression 

 Expression of NADH dehydrogenase did not change appreciably in daphnids 

exposed to any of the investigated particle types.   Only one treatment, 1 ppm C60-

malonate-γCD, significantly decreased NADH dehydrogenase expression 2 fold (df = 4, 

p < 0.05) (Figure 1a).  Expression of NADH dehydrogenase was also decreased by 5.2 

fold in daphnids exposed to 50 ppm SWCNT (Figure 3b), but this was not found to be 

significant due to large amounts of variation.  

 

DISCUSSION  

 In order to better understand overall nanomaterial toxicity, it is essential to 

understand the underlying mechanisms of nanomaterial toxicity to organisms at lower 

doses and over longer exposure periods. Current literature demonstrates that 
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nanomaterials can be toxic at high concentrations over shorter durations of exposure.  

However, it is likely that organisms will receive an extended exposure to lower 

concentrations of nanomaterials in the environment, and while there are some data on the 

chronic and sub-lethal impacts of nanomaterials to organisms, there are few data 

available on the mechanisms of toxicity for these more environmentally realistic 

exposure scenarios. In addition, it is important to understand the potential lasting impacts 

of nanomaterial exposure to organisms after the exposure is removed, and there are no 

data on the multi-generational impacts of nanomaterials to whole organisms after the 

exposure has been removed.  

 In our previous work, we demonstrated that core structure and functionalization 

can influence nanomaterial toxicity in chronic exposure scenarios [3] and multi-

generational scenarios where the initial exposure has been removed.  In the present study, 

we investigate potential underlying mechanisms of chronic and multi-generational 

nanomaterial toxicity to Daphnia. Overall, nanomaterials that elicited a stronger response 

to daphnid mortality, reproduction, and growth in previous work also induced changes in 

the expression of at least one of the investigated genes (GST, VTG-SOD, and NADH 

dehydrogenase), indicating the potential for using these genes to identify environmental 

stress in organisms from nanomaterial exposure.  

 

GST expression 

Several nanomaterials induced changes to the expression of GST, indicating that 

GST expression might be a sensitive biomarker even across generations and may indicate 

broader changes in physiology of daphnids in response to chronic exposures to 
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nanomaterials. GST is a cyto-protective enzyme that becomes elevated to free a cell or an 

organism from oxygen radicals or other harmful materials. In the F0 generation, 

reproduction and adult size were significantly reduced by functionalized and 

unfunctionalized SWCNTs. Here we show that expression of GST was decreased by 

SWCNT and SWCNT-CONH2 treatments, indicating that the toxicity of these particle 

types could be partially attributed to oxidative mechanisms.  It is possible that SWCNT 

and SWCNT-CONH2 particle types decrease the daphnid’s capacity for cyto-protection 

by anti-oxidant pathways, resulting in a decreased expression of GST mRNA levels. 

Decreases in GST expression have been observed in female bullheads after exposure to 

persistent organochlorines, and this was found to be related to altered sex steroid 

homeostasis [19].  It is also possible that SWCNT and SWCNT-CONH2 interfere with 

algae or with the Daphnia gut in ways that decrease algal uptake or algae nutrient 

availability for Daphnia, resulting in decreased levels of GST expression and an 

impairment to the Daphnia’s antioxidant defense system. There is evidence that GST and 

catalase enzymatic activity in Daphnia commutata are reduced when Daphnia are fed 

with lower quality food [20].  

Expression of GST was significantly increased by 1 ppm C60-malonate-γCD, 

indicating that this particle type can also induce toxicity to an organism by an oxidative 

stress mechanism. It has been previously shown that GST activity can be induced by 

cadmium exposure in Daphnia [21], and GST enzymatic activity has been increased in 

Daphnia after exposure to other types of nanomaterials, like TiO2 [22].  However, not all 

nanoparticle types induce GST expression and activity, as the other particle types in this 

experiment did not induce GST expression. Literature also illustrates that some 
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nanomaterials do not induce GST expression, as silver nanoparticles were not found to 

induce GST expression in Daphnia [23].  This indicates that the induction of GST 

expression by C60-malonate-γCD is specific to the particle type and functionalization.  

Decreases in the expression of GST were also observed in F1 and F2 daphnids 

from 50 ppm SWCNT-CONH2 exposures, and this was found to be significant in F2 

daphnids. In previous work, we demonstrated that reproduction was significantly 

decreased by exposure of daphnids to 50 ppm SWCNT-CONH2, and this effect was 

observed in F1 and F2 daphnids after the exposure was removed [3, 17]. It is possible that 

GST expression is decreased to the F2 generation by an epigenetic mechanism that could 

be transferred to future generations of organisms.  It has been demonstrated that CpG 

hypermethylation of the GST-M2 promoter leads to decreased Sp1 binding with reduced 

transcription of GST in lung cancer cells [24].  

VTG-SOD expression 

Expression of VTG-SOD was significantly increased by 1 ppm C60-amino-γCD 

and 1 ppm C60-malonate-γCD. The response was strong, with an increased fold change 

of more than 30 for both treatments. This is particularly noteworthy, as these particle 

types were the most toxic to F0 daphnids in our previous work [3]. After a chronic 

exposure, C60-amino-γCD and C60-malonate-γCD induced 100% mortality to daphnids 

at 5 ppm.  When the exposure concentration was dropped to 1 ppm, daphnids survived 

the chronic exposure with minimal impacts on reproduction and size (only 1 ppm C60-

amino-γCD resulted in a significant decrease in reproduction, and neither particle type 

impacted size). Vitellogenin is a major yolk protein found in most females that lay eggs, 

including vertebrate and invertebrate species.  It supplies the oocyte with essential 
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nutrients that are required for normal embryo development and maturation [25].  In recent 

literature, a superoxide dismutase domain was discovered at the N-terminus of the 

vitellogenin gene for some crustaceans, including brine shrimp and Daphnia. In brine 

shrimp, this domain has been implicated in the reproductive switch to embryonic 

diapause and the formation of diapause embryos [10].  In Daphnia, this domain is 

hypothesized to be important for the detoxification of superoxides that are generated 

specifically from vitellogenin metabolism [26].  Therefore the large increase in VTG-

SOD transcripts that are observed in C60-amino-γCD and C60-malonate-γCD exposed 

Daphnia from this experiment could be indicative of the Daphnia transitioning to 

diapause embryo formation, and increases in VTG-SOD transcripts could also be 

indicative of oxidative stress.  

NADH dehydrogenase expression 

Expression of NADH dehydrogenase was decreased in Daphnia after exposure to 

1 ppm fullerene-γCD complexes, but this was only found to be significant for C60-

malonate-γCD and not for C60-amino-γCD. A primary function of NADH 

dehydrogenase is energy transduction in mitochondria by the oxidation of NADH to 

NAD+.  It is known that a decrease in mitochondrial oxidative phosphorylation can lead 

to the production of superoxide anion radicals, and of the five complexes involved in 

oxidative phosphorylation, NADH dehydrogenase (complex I) is one of the complexes 

that can generate superoxide anion radical species [27]. Therefore, decreased expression 

of NADH dehydrogenase transcripts in C60-malonate-γCD exposed Daphnia could 

indicate a disruption in the electron transport chain and energy metabolism pathways, 

with potential consequences for increased production of reactive oxygen species and 
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oxidative stress. In addition, NADH dehydrogenase has been found to be down-regulated 

by other chemicals, including pesticides, neurotoxins, and heavy metals like cadmium 

[21, 28].  

The differential regulation of GST, VTG-SOD, and NADH dehydrogenase by 

different types of carbon nanomaterials indicates that core structure and functionalization 

play an important role in the toxic mechanism associated with these various particle 

types.  Although many particle types reduced daphnid reproduction and growth in our 

previous experiments, only a fraction of the Daphnia exposed to these particle types 

exhibited changes in the expression of these investigated genes, indicating the probability 

of other mechanisms of toxicity to be important for many of these particle types. In 

addition, exposure of daphnids to fullerene-γCD complexes resulted in increases in GST 

and VTG-SOD expression and a decrease in NADH-dehydrogenase expression, and this 

reinforces the higher toxicity of these particle types that was observed in previous work 

[3].  It is possible that these genes could be used to make up a suite of biomarkers to 

detect early exposure of organisms to these carbon nanomaterial types.  However, it 

appears that there are unique gene expression signatures with distinct nanomaterial types, 

and the use of these genes as biomarkers cannot be universally applied to all particle 

types, as the investigated carbon nanomaterials did not elicit a universal response in GST, 

VTG-SOD, and NADH dehydrogenase expression in Daphnia. This is also the case for 

other types of nanomaterials and biochemical pathways [9]. 

This research offers some of the first data on the impacts of nanomaterials to gene 

expression in long-term exposure and multi-generational scenarios, and it provides a 

more comprehensive understanding of carbon nanomaterial toxicity and potential 
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mechanisms associated with nanomaterial toxicity. These data can be used to influence 

nanomaterial design so as to maximize the application of nanomaterials in industry, while 

also minimizing potential harms to the environment.  
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 Table 1: Q-PCR Primers designed from contigs from genetic the backbone generated 
from 454 sequencing of Daphnia magna samples. 
Gene Forward Reverse 

GST GTGACAACATGAAACCCGAATAC  CCATACGCGTTGACCAGATAA  

VTG-SOD TCGCAATGCCACCATCAA  TCTCGACAGTGATCTGGTTCT  

NADH 
dehydrogenase 

GCAGGAAACAATAAGGCAAACC  
 

GGTGGCACAGACCATTTCTTA  

 

 



www.manaraa.com

	  

	  

103	  

CHAPTER 4 FIGURES 

  

Figure 1   Change in expression of GST in a) F0 Daphnia exposed to 50 ppm C60, 

SWCNT, SWCNT-CONH2, and SWCNT-PEG, b) F0 Daphnia exposed to 1 ppm C60-

amino-γCD and 1 ppm C60-malonate-γCD, and c) F0, F1, and F2 Daphnia from 50 ppm 

SWCNT-CONH2 exposures. Data expressed as fold change by the delta delta CT method 

and paired samples t tests.  Values determined to be significant at p < 0.05. 
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Figure 2   Change in expression of VTG in F0 Daphnia after exposure to 1 ppm C60-

amino-γCD and C60-malonate-γCD. Data expressed as fold change by the delta delta CT 

method and paired samples t tests.  Values determined to be significant at p < 0.05. 
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Figure 3   Change in expression of NADH dehydrogenase in F0 Daphnia after 

exposure to a) 1 ppm C60-amino-γCD and C60-malonate-γCD and b) 50 ppm fullerenes 

and carbon nanotubes. Data expressed as fold change by the delta delta CT method and 

paired samples t tests.  Values determined to be significant at p < 0.05. 
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Chapter	  5	  	  	  DISCUSSION	  AND	  CONCLUSIONS	  

The	  experiments	  carried	  out	  in	  this	  investigation	  provide	  data	  that	  are	  

essential	  for	  obtaining	  a	  comprehensive	  understanding	  of	  nanomaterial	  toxicity	  to	  

aquatic	  organisms.	  Current	  literature	  in	  nano-‐toxicology	  is	  heavily	  biased	  towards	  

the	  impacts	  of	  the	  acute	  toxicity	  of	  nanomaterials	  to	  biological	  systems	  at	  high	  

concentrations,	  using	  mortality	  or	  cell	  viability	  as	  the	  key	  endpoint	  to	  measure	  

toxicity	  [1,	  2].	  	  However,	  exposure	  of	  organisms	  to	  nanomaterials	  in	  the	  

environment	  is	  more	  likely	  to	  happen	  over	  longer	  exposure	  periods	  and	  at	  lower	  

doses	  that	  do	  not	  induce	  acute	  mortality.	  	  	  

This	  research	  investigated	  the	  chronic	  and	  multi-‐generational	  toxicity	  of	  

nanomaterials	  to	  organisms,	  and	  it	  included	  reproduction,	  adult	  size,	  and	  gene	  

expression	  changes	  as	  additional	  endpoints	  of	  toxicity	  in	  chronic	  and	  multi-‐

generational	  trials.	  Negative	  impacts	  to	  these	  endpoints	  can	  damage	  organism	  

fitness	  and	  population	  dynamics,	  with	  negative	  implications	  for	  overall	  ecosystem	  

health.	  A	  reduction	  in	  daphnid	  reproduction	  can	  result	  in	  an	  overall	  decline	  of	  the	  

daphnid	  population,	  while	  a	  change	  in	  daphnid	  size	  can	  alter	  the	  population	  

structure	  of	  Daphnia	  in	  freshwater	  ecosystems,	  with	  subsequent	  impacts	  to	  the	  

composition	  of	  phytoplankton	  communities	  and	  negative	  impacts	  to	  predators	  in	  

higher	  trophic	  structures	  that	  rely	  on	  daphnids	  for	  food.	  In	  addition,	  changes	  in	  gene	  

expression	  can	  precede	  physiological	  changes	  that	  would	  be	  observed	  in	  whole	  

organism	  toxicity	  assays.	  	  Genes	  that	  are	  identified	  to	  important	  in	  the	  Daphnia	  

response	  to	  nanomaterials	  could	  be	  used	  as	  biomarkers	  of	  early	  exposure	  of	  

organisms	  to	  nanomaterials,	  and	  knowledge	  of	  relevant	  changes	  in	  gene	  expression	  
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can	  help	  scientists	  and	  engineers	  better	  understand	  the	  underlying	  mechanisms	  of	  

nanomaterial	  toxicity	  [3].	  	  	  

	  

Ecological	  implications	  of	  CNMs	  on	  Daphnia	  populations	  

Population	  growth	  rate	  is	  one	  of	  the	  most	  robust	  endpoints	  that	  can	  be	  used	  

to	  measure	  toxicity	  as	  the	  population	  level;	  and	  mortality,	  reproduction,	  and	  growth	  

parameters	  are	  basic	  measurements	  that	  can	  be	  used	  to	  describe	  population	  

growth.	  	  Reproduction	  and	  growth	  are	  inextricably	  linked,	  as	  reproduction	  can	  only	  

begin	  after	  puberty	  is	  reached	  [4],	  and	  smaller	  sized	  daphnids	  have	  lower	  

reproduction	  rates	  compared	  to	  larger	  daphnids	  due	  to	  energetic	  constraints	  [5].	  	  

Results	  from	  this	  work	  indicate	  that	  carbon	  nanotubes	  could	  have	  a	  greater	  toxic	  

effect	  on	  daphnid	  reproduction	  and	  growth	  compared	  with	  the	  fullerenes	  (with	  the	  

exception	  of	  C60-‐γCD	  complexes),	  resulting	  in	  populations	  that	  are	  made	  up	  of	  

fewer,	  smaller	  individuals.	  	  

A	  reduction	  in	  the	  body	  size	  of	  individuals	  in	  a	  population	  can	  lead	  to	  

cascading	  effects	  in	  other	  trophic	  levels	  of	  the	  aquatic	  ecosystem.	  	  Daphnia	  are	  

selective	  grazers	  of	  phytoplankton	  communities,	  and	  they	  can	  select	  their	  food	  

based	  on	  algal	  size	  and	  quality	  [6].	  	  Smaller	  daphnids	  might	  consume	  algae	  with	  

different	  selection	  tendencies	  than	  larger	  daphnids	  [7],	  thereby	  altering	  the	  

phytoplankton	  communities	  of	  an	  ecosystem	  compared	  to	  a	  population	  of	  larger	  or	  

mixed	  size	  daphnids.	  In	  addition,	  Daphnia	  are	  a	  preferred	  food	  source	  for	  juvenile	  

and	  adult	  fish,	  as	  well	  as	  a	  primary	  food	  source	  for	  many	  invertebrates.	  	  Larger	  

daphnids	  are	  more	  susceptible	  to	  predation	  by	  fish,	  whereas	  smaller	  daphnids	  are	  
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more	  susceptible	  to	  predation	  by	  invertebrates	  [5].	  Therefore	  a	  daphnid	  population	  

composed	  of	  mostly	  smaller	  individuals	  due	  to	  carbon	  nanotube	  exposure	  would	  

provide	  a	  more	  abundant	  food	  source	  for	  aquatic	  invertebrates,	  while	  also	  

decreasing	  available	  nutrition	  for	  fish	  with	  possible	  implications	  for	  an	  increase	  in	  

aquatic	  invertebrate	  populations	  and	  a	  decrease	  in	  planktivorous	  fish	  populations	  in	  

an	  ecosystem.	  

A	  decrease	  in	  the	  population	  growth	  rate	  to	  the	  point	  where	  daphnid	  

populations	  are	  eliminated	  from	  an	  aquatic	  ecosystem	  would	  also	  have	  harmful	  

effects	  on	  an	  aquatic	  ecosystem.	  	  Potential	  adverse	  outcomes	  include	  the	  

eutrophication	  of	  small	  lakes	  and	  ponds,	  and	  the	  loss	  of	  a	  food	  source	  for	  higher	  

trophic	  structures	  of	  the	  ecosystem.	  Exposure	  of	  daphnids	  to	  5	  ppm	  C60-‐γCD	  

complexes	  resulted	  in	  100%	  mortality	  to	  daphnids	  after	  17	  days,	  indicating	  that	  it	  is	  

possible	  for	  exposure	  of	  daphnid	  populations	  to	  C60-‐γCD	  complexes	  to	  result	  in	  the	  

above	  described	  adverse	  outcomes.	  	  	  

Although	  population	  growth	  rate	  is	  frequently	  derived	  from	  mortality,	  

reproduction,	  and	  growth	  endpoints	  after	  a	  chronic	  exposure	  of	  daphnids	  to	  a	  

pollutant,	  some	  scientists	  argue	  that	  these	  parameters	  have	  little	  ecological	  

relevance.	  Organisms	  are	  particularly	  vulnerable	  to	  toxic	  exposure	  during	  prenatal	  

and	  perinatal	  life	  stages	  [8],	  and	  chemicals	  that	  do	  not	  appear	  toxic	  to	  juvenile	  and	  

adult	  organisms	  could	  be	  toxic	  to	  developing	  embryos.	  It	  has	  been	  proposed	  that	  

measuring	  the	  intrinsic	  growth	  rate	  has	  more	  ecological	  relevance,	  as	  this	  

experimental	  method	  can	  better	  illustrate	  impacts	  of	  a	  pollutant	  on	  age	  dependent	  

mortality,	  reproduction,	  and	  development.	  One	  of	  the	  ways	  to	  measure	  the	  intrinsic	  
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growth	  rate	  is	  to	  measure	  neonate	  fitness	  (measure	  reproduction	  and	  growth	  in	  

next	  generations	  of	  daphnids	  in	  the	  absence	  of	  pollutant	  exposure)	  [9].	  The	  

experiments	  described	  in	  chapter	  three	  of	  this	  work	  investigate	  neonate	  fitness	  in	  F1	  

and	  F2	  generations	  in	  the	  absence	  of	  nanomaterial	  exposure,	  and	  results	  from	  this	  

chapter	  indicate	  that	  most	  of	  the	  investigated	  carbon	  nanomaterials	  do	  not	  have	  a	  

significant	  multi-‐generational	  impact	  on	  daphnids.	  However,	  reproduction	  was	  

reduced	  in	  F1	  and	  F2	  daphnids	  from	  C60	  and	  SWCNT-‐CONH2	  treatments,	  and	  this	  

was	  significant	  for	  both	  F1	  and	  F2	  generations	  from	  SWCNT-‐CONH2	  treatments.	  This	  

indicates	  that	  these	  particles	  types	  might	  have	  a	  more	  significant	  negative	  impact	  on	  

the	  intrinsic	  population	  growth	  rate	  than	  originally	  explained	  based	  on	  chronic	  

toxicity	  data	  alone.	  

Chapter	  four	  investigated	  changes	  in	  gene	  expression	  that	  could	  demonstrate	  

how	  an	  organism	  responds	  to	  nanomaterial	  exposure.	  Fullerene-‐γCD	  complexes	  

were	  highly	  toxic	  to	  daphnids	  at	  5	  ppm;	  however,	  when	  the	  concentration	  was	  

dropped	  to	  1	  ppm,	  few	  toxic	  impacts	  were	  observed	  to	  Daphnia	  mortality,	  

reproduction,	  and	  growth.	  	  Despite	  the	  absence	  of	  changes	  to	  reproduction	  and	  

growth	  parameters,	  expression	  of	  GST	  and	  VTG-‐SOD	  were	  increased	  in	  C60-‐γCD	  

exposed	  daphnids	  and	  expression	  of	  NADH	  dehydrogenase	  were	  decreased	  in	  C60-‐

γCD	  exposed	  daphnids,	  indicating	  that	  these	  genes	  are	  good	  predictors	  of	  C60-‐γCD	  

induced	  toxicity	  to	  Daphnia.	  	  In	  addition,	  GST	  transcripts	  are	  expected	  to	  be	  elevated	  

in	  organisms	  undergoing	  a	  response	  to	  oxidative	  stress;	  however,	  GST	  expression	  

was	  decreased	  in	  SWCNT	  and	  SWCNT-‐CONH2	  exposed	  Daphnia.	  This	  indicates	  that	  

SWCNT	  and	  SWCNT-‐CONH2	  could	  impair	  the	  oxidative	  stress	  mechanism	  in	  
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Daphnia.	  The	  absence	  of	  a	  change	  in	  expression	  of	  GST,	  VTG-‐SOD,	  and	  NADH	  

dehydrogenase	  in	  daphnids	  exposed	  to	  other	  carbon	  nanomaterials	  indicates	  that	  

other	  mechanisms	  of	  toxicity,	  including	  mechanisms	  other	  than	  oxidative	  stress,	  are	  

important	  in	  the	  daphnids	  response	  to	  chronic	  and	  multi-‐generational	  nanomaterial	  

exposure.	  	  This	  is	  an	  important	  finding,	  as	  many	  studies	  indicate	  oxidative	  stress	  to	  

be	  a	  primary	  mechanism	  of	  toxicity	  of	  nanomaterials	  [10-‐12].	  	  

	  

Recommendations	  to	  minimize	  toxic	  effects	  of	  CNMs	  on	  aquatic	  ecosystems	  

The	  experiments	  described	  in	  chapter	  two,	  three	  and	  four	  illustrate	  some	  

important	  findings	  for	  carbon	  nanomaterial	  toxicity.	  First,	  acute	  toxicity	  assays	  are	  

not	  good	  predictors	  of	  impacts	  of	  chronic	  and	  multi-‐generational	  nanomaterial	  

exposure.	  Second,	  core	  structure	  and	  surface	  functionalization	  have	  an	  important	  

role	  in	  the	  toxicity	  of	  carbon	  nanomaterials	  to	  organisms,	  and	  this	  is	  true	  for	  chronic	  

exposures	  and	  for	  multi-‐generational	  exposure	  scenarios	  where	  the	  initial	  exposure	  

is	  removed.	  Third,	  carbon	  nanomaterials	  induced	  different	  changes	  to	  the	  

expression	  of	  GST,	  VTG-‐SOD,	  and	  NADH	  dehydrogenase,	  indicating	  nanomaterials	  

can	  influence	  its	  toxicity	  to	  organisms	  by	  different	  mechanisms	  depending	  on	  the	  

particle	  type.	  Based	  on	  these	  findings,	  the	  toxicity	  of	  carbon	  nanomaterials	  can	  be	  

reduced	  by	  manipulating	  the	  particles	  to	  have	  core	  structures	  and	  surface	  

chemistries	  that	  minimize	  toxicity	  to	  organisms.	  	  	  

Gamma	  cyclodextrins	  are	  commonly	  used	  as	  drug	  solubilizers	  and	  drug	  

carriers	  [13];	  however,	  C60-‐γCD	  complexes	  induced	  significant	  toxicity	  to	  F0	  

daphnids.	  The	  use	  of	  this	  particle	  type	  in	  the	  medicine	  industry	  should	  be	  avoided	  
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until	  its	  toxicity	  to	  aquatic	  organisms	  is	  better	  understood.	  Scientists	  are	  designing	  

other	  types	  of	  fullerene	  derivatives	  for	  drug	  directed	  delivery	  and	  anti-‐cancer	  

therapy	  applications	  [14,	  15],	  so	  it	  is	  possible	  to	  continue	  to	  explore	  the	  application	  

of	  other,	  less	  toxic	  fullerene	  derivatives	  in	  medicine.	  	  

Carbon	  nanotubes	  induced	  more	  consistent	  decreases	  to	  reproduction	  and	  

growth	  in	  F0	  daphnids	  compared	  with	  fullerenes.	  	  Carbon	  nanotubes	  have	  

properties	  that	  are	  unique	  from	  fullerenes	  due	  to	  their	  core	  structures	  and	  high	  

aspect	  ratios,	  and	  replacing	  nanotube	  applications	  with	  fullerenes	  would	  reduce	  the	  

potential	  usefulness	  of	  their	  application.	  	  However,	  carbon	  nanotube	  toxicity	  was	  

found	  to	  vary	  in	  daphnids	  with	  respect	  to	  specific	  surface	  chemistry,	  indicating	  that	  

carbon	  nanotubes	  can	  be	  functionalized	  to	  reduce	  their	  toxicity	  to	  living	  systems.	  	  

Unfunctionalized	  SWCNT	  and	  SWCNT-‐COOH	  particle	  types	  induced	  more	  toxicity	  to	  

F0	  reproduction	  and	  growth	  compared	  to	  other	  functionalized	  single-‐walled	  carbon	  

nanotubes.	  It	  is	  possible	  that	  unfunctionalized	  SWCNT	  induced	  higher	  toxicity	  to	  

Daphnia	  because	  this	  particle	  type	  is	  not	  compatible	  in	  biological	  media.	  In	  addition,	  

SWCNT-‐COOH	  particle	  types	  are	  more	  likely	  to	  have	  amorphous	  carbon	  due	  to	  

oxidation,	  and	  amorphous	  carbon	  is	  more	  toxic	  to	  organisms.	  Functionalization	  of	  

carbon	  nanotubes	  to	  make	  them	  more	  biocompatible	  might	  decrease	  the	  general	  

toxicity	  associated	  with	  unfunctionalized	  particles,	  but	  caution	  needs	  to	  be	  used	  

regarding	  surface	  chemistry	  to	  reduce	  potential	  adverse	  impacts	  from	  oxidation	  of	  

the	  nanotubes.	  	  	  

Exposure	  of	  F0	  daphnids	  to	  SWCNT-‐CONH2	  decreased	  multi-‐generational	  

reproduction	  out	  to	  the	  F2	  generation.	  This	  function	  group	  (-‐CONH2)	  is	  similar	  to	  
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urea,	  which	  is	  commonly	  found	  in	  fertilizer	  and	  contributes	  to	  the	  eutrophication	  of	  

coastal	  wetlands	  and	  other	  aquatic	  habitats.	  In	  addition,	  there	  is	  evidence	  that	  urea	  

can	  induce	  colony	  formation	  in	  Scenedesmus,	  resulting	  in	  grazing	  protection	  of	  the	  

algae	  from	  Daphnia	  [16].	  Perhaps	  CONH2	  functionality	  results	  in	  change	  in	  the	  algal	  

environment	  or	  nutrient	  quality	  of	  the	  algae	  that	  results	  in	  higher	  toxicity	  to	  

Daphnia	  that	  can	  be	  propagated	  to	  future	  generations	  of	  organisms.	  The	  expression	  

of	  GST	  was	  significantly	  down-‐regulated	  in	  F0	  and	  F2	  daphnids,	  indicating	  that	  

exposure	  of	  daphnids	  to	  this	  particle	  type	  can	  impair	  the	  anti-‐oxidant	  defense	  

system.	  	  

	  Based	  on	  results	  from	  this	  work,	  functionalization	  of	  carbon	  nanotubes	  with	  

COOH	  and	  CONH2	  should	  be	  avoided.	  	  However,	  functionalization	  of	  SWCNTs	  with	  

PEG	  induced	  the	  least	  negative	  impacts	  to	  parental	  and	  multi-‐generational	  

reproduction	  and	  growth.	  	  Functionalization	  with	  PEG	  makes	  SWCNTs	  more	  

biocompatible	  for	  applications	  in	  medicine,	  and	  this	  particle	  type	  is	  also	  being	  

studied	  for	  cancer	  therapy	  applications	  [17].	  	  SWCNTs	  should	  be	  functionalized	  to	  

improve	  their	  biocompatibility	  in	  biological	  systems,	  but	  the	  type	  of	  functionality	  

should	  be	  carefully	  considered	  before	  use	  in	  industrial	  applications,	  as	  carbon	  

nanotube	  toxicity	  varies	  greatly	  with	  differing	  surface	  chemistries.	  	  

	  

Environmental	  fate	  of	  CNMs	  and	  implications	  for	  toxicity	  

	   This	  research	  indicates	  that	  carbon	  nanomaterials	  are	  toxic	  to	  aquatic	  

organisms	  at	  concentrations	  in	  the	  ppm	  range.	  	  This	  is	  significantly	  higher	  than	  

estimated	  concentrations	  of	  engineered	  carbon	  nanomaterials	  in	  the	  environment	  
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[18].	  	  However,	  carbon	  nanomaterials	  are	  expected	  to	  be	  more	  persistent	  in	  the	  

environment,	  and	  it	  is	  possible	  that	  the	  accumulation	  of	  carbon	  nanomaterials	  in	  the	  

environment	  could	  reach	  higher	  concentrations	  that	  could	  induce	  toxicity	  to	  aquatic	  

organisms	  that	  are	  described	  in	  this	  work.	  In	  addition,	  the	  carbon	  nanomaterials	  can	  

be	  transformed	  in	  the	  environment	  upon	  exposure	  and	  interaction	  with	  

environmental	  components	  like	  natural	  organic	  matter,	  proteins,	  suspended	  solids,	  

UV	  light.	  This	  can	  lead	  to	  changes	  in	  particle	  characteristics	  like	  aggregation	  state	  

and	  hydrophobicity,	  which	  can	  alter	  toxicity	  and	  make	  carbon	  nanomaterials	  more	  

or	  less	  toxic	  to	  organisms	  [19].	  	  This	  work	  offers	  preliminary	  assessment	  of	  carbon	  

nanomaterial	  toxicity	  to	  Daphnia,	  but	  more	  work	  needs	  to	  be	  done	  to	  elucidate	  how	  

the	  toxicity	  of	  carbon	  nanomaterials	  will	  change	  after	  transformation	  and	  

degradation	  in	  the	  environment.	  	  

	  

Summary	  and	  conclusions	  

This	  research	  provides	  an	  in	  depth	  and	  comprehensive	  description	  of	  chronic	  

and	  multi-‐generational	  nanomaterial	  toxicity	  to	  Daphnia.	  	  A	  comprehensive	  

understanding	  of	  nanomaterial	  toxicity	  is	  essential	  for	  the	  establishment	  of	  a	  more	  

effective	  regulatory	  framework	  for	  nanomaterials,	  so	  nanomaterials	  can	  be	  

synthesized	  in	  ways	  that	  minimize	  the	  potential	  harms	  they	  pose	  to	  organisms	  and	  

the	  environment.	  Despite	  the	  demonstrated	  advantages	  of	  the	  use	  of	  nanomaterials	  

for	  many	  applications,	  the	  data	  reported	  in	  this	  research	  indicates	  that	  carbon	  

nanomaterials	  can	  induce	  chronic	  and	  multi-‐generational	  toxicity	  to	  aquatic	  
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organisms	  and	  that	  nanomaterial	  toxicity	  is	  highly	  specific	  to	  particle	  type,	  making	  it	  

difficult	  to	  draw	  generalizations	  about	  carbon	  nanomaterial	  toxicity.	  	  

Chapter	  two	  and	  three	  are	  published	  in	  peer-‐reviewed	  scientific	  journals,	  and	  

chapter	  two	  has	  already	  been	  cited	  in	  two	  additional	  peer-‐reviewed	  journal	  articles	  

[20,	  21].	  In	  addition,	  the	  results	  from	  this	  research	  have	  been	  presented	  at	  multiple	  

local,	  national,	  and	  international	  conferences,	  including	  the	  National	  Society	  of	  

Environmental	  Toxicity	  and	  Chemistry	  (SETAC),	  the	  International	  Conference	  on	  the	  

Environmental	  Effects	  of	  Nanoparticles	  and	  Nanomaterials	  (ICEEN),	  and	  the	  

National	  Conference	  for	  the	  Society	  of	  Toxicology	  (SOT).	  	  This	  research	  emphasizes	  

the	  importance	  of	  acquiring	  sub-‐lethal	  toxicity	  data	  for	  nanomaterial	  toxicity	  to	  

better	  inform	  the	  industry	  and	  regulators.	  	  
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